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Abstract. Many problems can be modeled as single-server queues with impatient customers. An example 
is that of the transmission of voice packets over a packet-switched network. If the voice packets do not 
reach their destination within a certain time interval of their transmission, they are useless to the receiver 
and considered lost. It is therefore desirable to schedule the customers such that the fraction of customers 
served within their respective deadlines is maximized. For this measure of performance, it is shown that 
the shortest time to extinction (STE) policy is optimal for a class of continuous and discrete time 
nonpreemptive M/G/l queues that do not allow unforced idle times. When unforced idle times are 
allowed, the best policies belong to the class of shortest time to extinction with inserted idle time (STEI) 
policies. An STEI policy requires that the customer closest to his or her deadline be scheduled whenever 
it schedules a customer. It also has the choice of inserting idle times while the queue is nonempty. It is 
also shown that the STE policy is optimal for the discrete time G/D/l queue where all customers 
receive one unit of service. The paper concludes with a comparison of the expected customer loss using 
an STE policy with that of the first-come, first-served (FCFS) scheduling policy for one specific queue. 

Categories and Subject Descriptors: C.2.1 [Computer Communications Networks]: Network Architecture 
and Design; D.4.8 [Operating Systems]: Performance-queuing theory; stochastic analysis; F.2.2 
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1. Introduction 

The problem of a queue with customers that have to begin service before their 
respective deadlines has several diverse applications. An example is that of impa- 
tient customers who leave the queue if they are not served within a certain time 
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interval of their joining the queue. Another example is that of a blood bank in 
which the stored blood may be unusable if it is not used within a certain number 
of days after it is collected. Yet another application, which is the motivation for 
this paper, is the transmission of voice or video over a packet-switched network. 
These packets have to reach their destination within a certain time interval of their 
transmission or they are useless to the receiver and considered lost. Voice com- 
munication requires that the end-to-end propagation delay be no more than about 
300 ms for a normal conversation [3]. However, the loss of a small percentage of 
packets is usually tolerable since the speech is still intelligible to the receiver [5]. 

A node of a packet-switched network or a local-area network is often modeled 
as a single-server queue [8]. Therefore, we consider as our model a single-server 
queue with customers with deadlines. The parameter that we wish to maximize is 
the fraction of customers that begin their service before their respective deadlines. 
We consider both continuous and discrete time queues in which no preemptions 
are allowed and in which the service times are not known at the beginning of 
service. We show that if an optimal policy exists, then it belongs to the class of 
shortest time to extinction with unforced idle time (STEI) policies. If an optimal 
policy does not exist, we show that the best policies belong to the class of STEI 
policies. Here, an STEI policy is one that, whenever the queue is not empty, may 
choose to schedule either no customer or the customer closest to its deadline. 

When we restrict ourselves to the class of policies that do not allow unforced 
idle times, then the shortest time to extinction (STE) policy is optimal for the 
nonpreemptive M/G/ 1 queue. Here the STE policy schedules the customer closest 
to its deadline. Last, we show that the STE policy is optimal over all policies for 
the discrete time G/D/ 1 queue when the service time is exactly one time unit. This 
latter queue is of particular interest because it is a commonly used model for 
statistical multiplexers in data communication systems [ 131. 

The STE policy is very similar to the earliest due date (EDD) scheduling policy 
proposed by Jackson [7]. Consider a set of n tasks (Ti, 1 5 i I n) with the 
corresponding )2 due dates (di, 1 I i 5 n ). Let the finishing times under schedule 
S beh(S). Then the lateness of T is defined asJi‘(S) - di and the tardiness is defined 
as max(O,f;(S) - di). Jackson showed that the maximum lateness and maximum 
tardiness are minimized by sequencing the tasks in the order of nondecreasing due 
dates. As we shall see in the next section, STE scheduling differs from EDD 
scheduling in that it never schedules tasks that are already past their due dates. 
Note that the tasks and their due dates are known a priori under Jackson’s model. 
Using the same a priori information, Moore [9] devised an algorithm to minimize 
the number of late tasks. Pinedo [ 121 considered the problem of minimizing the 
number of late jobs (customers) when the processing times are exponentially 
distributed and the deadlines are randomly distributed. He assumed that no new 
jobs are allowed into the system once the processing begins. Su and Sevcik [ 141 
consider the problem of scheduling customers with deadlines in a queue. They 
showed that EDD scheduling minimized performance parameters such as expected 
lateness and tardiness. 

Pierskalla and Roach [ 1 l] showed that a policy similar to the STE policy is an 
optimal issuing policy under the conditions that prevail in blood banks. Here, the 
additions to the blood bank (“customer arrivals”) are random as is the demand 
(“customer service times”), and the issuing policy should be such that the amount 
of blood that becomes unusable as a result of being stored too long is minimized. 
More recently, while considering scheduling problems that arise in the area of real- 
time systems, Dertouzos [2] has shown that for any arbitrary set of arrivals with 
arbitrary processing times and deadlines the EDD policy is optimal if preemptions 
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are allowed. Here a (real-time) scheduling policy is considered optimal if it produces 
a feasible schedule whenever a clairvoyant scheduling policy (which is aware of 
future job arrivals) can do so. In queuing theory literature, queues with impatient 
customers have been usually analyzed assuming a FCFS scheduling policy [ 11. 

In Section 2 we introduce the notation used in this paper and define the STE 
policy and the class of STEI policies. Section 3 contains the results regarding the 
optimality of the STE policy and the class of STEI policies. In Section 4, we 
compute the throughput of an STE policy and compare its performance with the 
FCFS scheduling policy for the M/D/l queue. We conclude this paper with 
Section 5, in which we summarize our results. 

2. Definitions and Notation 
We consider queues in which each customer has a deadline from the time of arrival 
to the beginning of service. Since we are interested in both continuous and discrete 
time queues, we introduce notation that applies to both. We assume that the reader 
is aware of when a random variable takes on continuous values (continuous time 
queues) and when it takes on discrete values (discrete time queues). In the case of 
the discrete time queue, we assume that the basic unit of time is of length 1. 

Let 7’; denote the arrival time of the ith customer. Let Ai denote the time between 
the arrivals of the (i - 1)st and ith customers. We assume that Ai is a random 
variable with arbitrary distribution. Let E; denote the extinction time of the ith 
customer (i.e., the time by which it must be served). Here E; = Ti + Diy where Di 
is a random variable with a general distribution. We refer to Di as the real-time 
constraint or the relative deadline for customer i. Last, let (Bi 1 l5i be an independent 
and identically distributed (i.i.d.) sequence of random variables denoting the service 
times of the customers. 

We use the notation AN= (AillcisN, DN = (Di)15;c~, BN = (Bi]laiaN, and SN = 
(AN, DN, BN), 1 5 N. In addition, whenever we focus on a specific sample realization 
of the above random variables, we shall use lowercase notation (i.e., ai for Ai, etc.). 
Furthermore, we let a = {ailrci, b = (bill,i, d = (d;)l,i, aN = (ai)lci5N, 
bN = (b;)~&=N, and dN = (SdiJlcisN. Last, let S = (a, d, b) and sN = (aN, dN, bN), 
N= 1, . . . . These last two quantities are referred to as an input sample and 
finite input sample, respectively. 

We consider two rules for assigning service times to customers. 

Rule 1 (assignment at arrival). According to this rule, Bi denotes the service time 
of the ith customer to arrive in the system. 

Rule 2 (assignment at service). According to this rule, Bi denotes the service time 
of the ith customer to be served. 

In either case we assume that the service times are independent of the arrival times 
and extinction times. Although not considered in this paper, other assignment rules 
are possible. Note that the analysis of single-server queues without deadlines does 
not depend on how service times are assigned to customers. Although this holds 
true for the queue with deadlines, we shall find that queues in which service times 
are assigned according to rule 2 are easier to analyze. Also note that, if the service 
times of all the customers are identical, the two assignments are also identical. 

We use the notation A/B/C + D to denote a queue with customer deadlines 
where A, B, and C have the same meaning as in Kendall’s notation and D gives 
the distribution of the relative deadlines. No preemptions are allowed in any of the 
queues that we consider in this paper. 
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Let ?r be a policy that determines what customer in the queue is to be executed 
(if any) whenever the server is free. This policy bases its decision on the customers 
that are eligible for service, as well as on the past history of the system. We wish to 
choose ?r so that we maximize the fraction of customers beginning service before 
their respective extinction times. Consider a system in which exactly N customers 
arrive for service. We define V,(a) to be the total expected number of customers 
served for this system. Define the fraction of customers served for the system as 
N+ 00 (under policy r) to be 

VN(a) V(7r) = lim inf N. 
N-m 

Finally, let V = sup, V(T). A policy P* is optimal if V(?r*) = V. 
We find it useful to calculate the fraction of customers that make their deadline 

for a specific sample path s. Consequently, we define V,(T, sN) to be the number 
of customers served in a system with exactly N arrivals having sample path sN and 
V(a, s) to be the long-term fraction of customers that are served when the sample 
path is s. Here V(?F, s) is defined as 

V(T, s) = lim inf vN(r, SN) 

N+.cO 
N . 

In addition, VN(T) and V(T) can be expressed as 

vN(r) = E[VN(r, SN)], 
V(7r) = E[V(?r, s)]. 

A customer is eligible under policy K at time t if it has neither exceeded its deadline 
nor begun service. Consequently, the set of customers of interest at any time t is 
denoted by CT(t) = {cjl, cj2, . . . , cj, ) consisting of all the eligible customers at time 
t, jj z 1, 1 I i % n. The set of extinction times of these customers is denoted 
by &At ). 

Consider the actions that policy x can take at time t. If the server is busy, then 
?r takes no action. If the server is idle at time t, then r can either schedule no 
customer or schedule a single customer from C=(t). Policy K is allowed to choose 
one of these actions according to some distribution that depends on X, C=(t), and 
the previous history HI. We define pO(x, t, &) to be the probability that r chooses 
not to schedule a customer and pi(r, t, H,) to be the probability that H schedules 
CUStOIllerji E C&t), 1 I i 5 n. 

If r chooses not to schedule a customer at time t and C,(t) # 0, then it delays 
making a new scheduling decision by a random amount of time T with some 
arbitrary distribution function F,(x 1 H,) (T takes on discrete values in the case of 
a discrete time queue). The policy does not perform a scheduling decision until 
either 7 time units elapse or an arrival occurs. Without loss of generality, we may 
impose one last constraint on ?r : namely, 7r is prohibited from scheduling two 
successive idle times when the queue is nonempty unless they are separated by the 
arrival of one or more customers. 

The history of the system up to time t may be defined as the tuple HI = 
(at, d I, rr, er, u,), where u1 is an ordered set of arrival times of all customers 
that arrive prior to t; d, is an ordered set of relative deadlines corresponding to the 
customers that arrive prior to t; and r, is an ordered set of all times prior to time t 

at which customers began service. In addition, er is an ordered set of all customers 
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that were in service by time t, and uI is an ordered set of the service times for 
completed customers prior to time t. 

We are now in a position to show that VN(7r), N > 0, and V(X) do not depend 
on the rule used to assign service times to customers. 

LEMMA 1. The performance of a policy a does not depend on which assignment 
rule is used to assign service times to customers. 

PROOF. Let us consider the first N customers cl, . . . , CN that enter the system. 
Let F’:‘(X) and V!,?(r) denote the expected number of customers served under 
policy r when service times are assigned according to rules 1 and 2, respectively. 
We shall show that V!,!)(r) L V$‘(7r). A similar argument can then be used to 
establish the reverse inequality. 

We define a new random variable %$ corresponding to the ordered set of 
completed customers out of the N customers. This set is ordered in increasing 
customer completion time and takes on value [ = (ck,, ck2, . . . , ck,,), ck, E 
kl,C2, ***, ~~1, 1 % i 5 n I N, Given a specific finite input sample sN, the rules 
governing policy 7r allow us to compute the probability distribution for ‘8’, 
qC(sN, vr) = P[%% = [ 1 SN = sN, ~1, [ c (cl, . . . , cN]. Let b;(t) be the set of 
service times associated with the customers in [ also ordered in increasing cus- 
tomer completion time. Last, define b1l-(4) to be the set of customers that did not 
make their deadlines, ordered in increasing customer arrival time; that is, bk( [) = 
b, , . . . , hm,-“~ = bv - bh( [), where a,,,, 5 am,, i < j. 

Construct a new finite input sample SE’ that has the same arrival times and 
deadlines as sN and the following service times: b$’ = b;(f) 0 bA([).’ Note that 
s$’ differs from sN only in b$’ which is a permutation of bN. Since the service times 
are i.i.d., s$’ and sN have equal probability measure. We claim that policy K 
operating on this new finite input sample using rule 2 for assigning service times 
to customers will produce the completed set of customers %?j$ = 5 with probability 
@(sN, 7r). Consequently, for every finite input sample sN and set of completed 
customers %&, we can determine a new finite input sample having equal probability 
measure such that the same set of customers is completed with equal probability. 
Therefore, taking the expectation over all completed sets of customers and finite 
input samples yields V$,!‘(X) > V$‘(r), N = 1, . . . . 

A similar argument can be used to show that the reverse inequality holds. 
Therefore we have V:)(r) = I/$)(*). 

We have shown that the performance is independent of the assignment rule for 
anyN= 1, . . . . Consequently, V(X) is also independent of the assignment rule 
used. Q.E.D. 

As a consequence of the above lemma, we are free to choose either assignment 
rule in subsequent discussions. We now conclude this section with a definition of 
the STE policy and the class of STEI policies. 

Let the kth customer to be served since time t = 0 be assigned to the server at 
time tl . 

Definition 1. Policy x is a shortest time to extinction (STE) policy if at time t;, 

1 5 k, it always schedules the eligible customer with the smallest extinction time. 
In addition, the server is always busy as long as there are eligible customers available 

’ Here, if R = (xl, x2, . . . , x,) and S = { y,, . . . , y,,,) are ordered sets, then R 0 S is the ordered 
set lx,, . , x,, yl, . . . , ~4. 
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FIG. 1. (a) Behavior of STE. (b) Behavior of STEI. (c) Behavior of 
FCFS. (d) STEI emulating FCFS. 

that have not yet been served; that is, pO(r, t) = 0 whenever the server is available 
and G(t) # 6. 

An example of how the STE policy schedules a given set of arrivals is shown in 
Figure la. 

Definition 2. Unforced idle times are time intervals when the server is idle while 
eligible customers are available. 

Definition 3. Policy K is a shortest time to extinction with unforced idle times 
(STH) policy if, whenever it schedules a customer, it schedules the eligible 
customer with the smallest extinction time. In other words, PO(T, t) 10, ~(a, t) I 
0, where ej, = min{ek : ek E CT(t)], and ~~(a, t) = 0, otherwise. 

The STE policy, defined earlier, is an example of an STEI policy. Figure lb 
shows how an STEI policy might schedule the same set of arrivals as shown in 
Figure la. Note that the STEI policy schedules all the arrivals, whereas the STE 
policy leads to the loss of one arrival in this particular case. Figure lc illustrates 
how a first-come, first-served (FCFS) policy schedules the arrivals. 
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3. The Optimality of the STE and STEI Scheduling Policies 
In this section we show that STE is optimal when unforced idle times are prohibited 
for the M/G/l + G queue and that there is no class of policies better than the 
STEI class of policies for the G/G/l + G queue when unforced idle times are 
allowed. In the course of proving these results, we shall compare sets of extinction 
times and show that one set dominates another set. Consequently, the first step is 
to define dominance and establish some properties that are satisfied by this relation. 

Consider two ordered sets of nonnegative real numbers R = (Xi, x2, . . . , X, 1 and 
s= (Yl,Y2,*--, ym). We define a Large(R, k) to be the ordered subset of R that 
contains the k largest values of R. More formally, 

f 

0, k I 0, 
Large(R,k)= (maxRJULarge(R-(maxR],k-I), O<k<lRJ, 

R, kr IRI, 
where max R is the largest element in R. 

Definition 4. We say that R dominates S (R > S) if either 

(1) R=S, 
(2) n = m and X, 2 yk;, 1 < i < m, for some permutations jl, . . . , j,,, and 

(3) t’L iri l!Z Eieii, ;n”i > S. 

We define the operation Shift(R, X) = ( y - x 1 y E R, y 2 x). Observe that 
1 Shift(R, X) 1 I 1 R 1 since there may be some y E R such that x > y. Here 1 R I 
denotes the cardinality of the set R. The following lemma gives conditions under 
which dominance is preserved when set operations and the Shift operation are 
performed on R and 5’. 

LEMMA 2. IfR > S, then: 

(1) R + (x) >S+ {x),firx>O, 
(2) R - (x) > S, where x = minl,ia,(x;) and n > m, 
(3) R>S- (y), whereyES, 
(4) R - (x) > S - ( yk), where x = minl,i,,(xiJ and 1 I k 5 m, 
(5) Sh$(R, x) > Sh@(S, x). 

PROOF 

(1) The proof of this property follows directly from the definition of dominance 
for two sets of nonnegative numbers. 

(2) Since n > m and x is the smallest element of R, then Large(R - (x), m) = 
Large(R, m) > S. 

(3) The proof of this property follows directly from the definition of dominance. 
(4) This property is a consequence of properties (2) and (3). 
(5) One consequence of the dominance relation is that Large(R, i) > Large(S, i), 

0 5 i % m, whenever R > S. Let j = 1 Shift(S, x) 1. Since Large(R, j) > 
Large(S, j) and all of the elements in both of these sets exceed x, then it 
follows that Shift(R, x) > Shift(Large(R, k), x) > Shift(Large(S, k), x) = 
Shift(S, x). Q.E.D 

We now state and prove a theorem regarding the optimality of the STE policy 
for the case of nonpreemptive M/G/l + G queues where unforced idle times are 
prohibited. 
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THEOREM 1. The STE policy is optimal for the nonpreemptive M/G/I + G 
queue with deadlines to the beginning of service when no unforced idle times are 
allowed and when interarrival times and deadlines are i.i.d. random variables. 

PROOF. For ease in exposition, STE refers to the STE policy. We first introduce 
a new definition for V(a) that is appropriate for the M/G/ 1 + G queue. Let M,(i) 
denote the number of customers served in the ith busy period under policy 7r. 
Let X,(i, j) denote the service time of the jth customer served during the ith 
busy period. Let Z,(i) denote the length of the idle period following the 
ith busy period. Last, define P(T) to be the system throughput: 

pc(a) = !!! inf E[C&, (CF/j) X,(i, j)) + IT(i)] * (1) 

As a consequence of the assumptions that interarrival times are i.i.d. exponential 
random variables with mean l/X and that service times are i.i.d. random variables, 
we can rewrite the above equation 

I = lim inf CY=F, WM01 
n-m CL, E[M,(i)]E[&l + l/A * (2) 

Finally, V(r) can be expressed in terms of p(r) as follows, 

In order to prove that STE is optimal for the M/G/l + G queue, it suffices to 
show that E[M&i)] 2 E[M,(i)] for all i z 1. We focus on a single busy period 
under ?r. In order to simplify exposition, we assume that this busy period begins at 
time t = 0. We show that C&t) > C=(t) during this busy period for every input 
sample s and every policy 7r. Consequently, the number of customers served in this 
busy period is greater under STE than it is under X. We shall show that this 
dominance holds when service times are assigned in the order of service. 

Consider a single policy x and a single input sample s. We need only focus on 
the points of time at which either a customer arrives, a customer departs, or 
a customer misses a deadline in the systems operating under a and STE during 
the period of time covered by 7~‘s busy period. Let to = 0 5 t, 5 . . . 5 
t, 5 t;+, 5 a** 5 t, denote these times. Here t, denotes the service completion 
under x that terminates the busy period. 

It is useful to distinguish among the following events: 

ZY, - Arrival of a customer at both systems. 
8” - Service completion at one or both systems. 
g3 - Loss of one or more customers at one or both systems due to missing of 
deadline. 

A more complete description of the history of both systems is given by the 
sequence of event-time pairs (to, &), (t,, A,), . . . , (ti, Ai), . . . , (t,,, A,) where A0 = 
8, A,, = Z$, and t, is the time at which an event of type Ai E 18, iZz2, ?%73) (1 5 i < 
n) occurs. If two types of events occur simultaneously, we present them as separate 
events with the identical event times. The order in which they are listed in 
immaterial. 

First observe that, whenever CSTE(ti) > Cx(ti) and ti+, > t;, then C&(t) > CT(t), 
ti 5 t < I?;+,. This is a consequence of property (5) in Lemma 2. The proof that 
C&t) > C=(t) is by induction on the event times to, t,, . . . . 
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Induction Hypothesis. As both systems are initially in the same state at 
t = to = 0, the relation holds. 

Inductive Step. Let us assume that the hypothesis is true for tk, k = 0, 1, . . . , 
i. We now show that it is also true for ti+, . There are several cases according to the 
type of event that occurs at time ti+, . 

Case 1 (Ai+, = 8,)). First, note that CST.E(ti-C1) > C,(ti+,). Application of 
property (1) in Lemma 2 then yields CsTE(ti+,) > C,(t;+,). 

Case 2 (Ai+, = &%). If a service completion occurs under 7r, then a service 
completion occurs under STE at the same time. Consequently, if C*(t i+, ) # 0, 
then, according to the inductive hypothesis, C&(ti+, ) # 0. A customer will be 
scheduled by each policy and CsTE(ti+l) ) Cr(ti+, ) according to property (4) from 
Lemma 2. 

Case 3 (A,+, = Z?“). There are three subcases according to whether a customer 
is lost under STE, r, or both policies. Consider the case in which a customer is lost 
under STE but not ?r. For this to happen and the inductive hypothesis to hold, 
CSTE(ti+, ) must contain at least one more customer than C,(ti+, ). Consequently, 
property (2) of Lemma 2 can be applied to show that CSTE(ti+I ) > C,(t,+, ). 

If Ai+l = &??, corresponds to the loss of a customer under r, then property (3) of 
Lemma 2 can be used to show CsTE(t;+l) > Cr(ti+,). Similarly, property (4) 
of Lemma 2 can be used in the case of loss of a customer under both STE and 7r 
to show C&t;+ 1) ) Cr(ti+ I )a 

This completes the inductive step. Therefore, we have shown that C&(t) > 
C=(t) during a busy period under a. Therefore the number of customers served 
under STE is at least as large as the number served under 7~ during a single busy 
period when given any input sample s. As a consequence STE is the optimal policy 
over all policies that prohibit unforced idle times. Q.E.D 

One can construct examples in which the performance of the system can be 
increased by allowing the policy the option of not scheduling a customer even 
when one exists in the queue. This can be useful in the situation in which the 
customers in the queue have deadlines that are substantially longer than the average 
deadline. In this case the policy may keep the server idle with the expectation that 
a customer may arrive with a deadline considerably shorter than those of the 
customers in the queue. We now examine this class of policies. 

The following theorem states that for every policy that does not belong to the 
class of STEI policies, there exists an STEI policy with the same performance. 
Consequently, the STEI class of policies contains the best policies, that is, those 
with the highest performance. Thus the designer of a real-time system need only 
consider this class of policies. 

THEOREM 2. For any policy x, there exists an STEI policy S+ such that VN(7r*) 
= V,(r) and V(r*) = V(r). 

PROOF. Consider any policy 7r not in the class of STEI policies. We shall 
construct an STEI policy r* that exhibits the same performance as that of T. 

Policy ?r* is defined as follows: 

(1) a* maintains an ordered list of customers at time t, d(t), which would be 
eligible under 7~ at that time when provided with the same input sample, that 
is, d(t) = CT(t). 
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(2) r* maintains a history H: identical to the history that r would produce when 
given the same input sample; that is, H: = H,. 

(3) 7r* makes scheduling decisions according to the following rules: 
(a) At time t, it schedules the customer closest to its deadline with probability 

1 - PO(T, t, fq). 
(b) At time t, it schedules no customer with probability po(7r, t, H:). 

(4) X* modifies s’(t) as follows: 
(a) Customer c is removed from s’(t) (1) when its deadline expires, or (2) with 

probability &r, t, H: ) at a time when r* schedules a customer. 
(b) Customer c is added to d(t) when it arrives to the system. 

(5) 7r* modifies H: as follows: 
(a) At the time of an arrival, the arrival time and relative deadline of the 

customer are added to a, and d,. 
(b) At the time of a departure, the service time of the customer is added to uI. 
(c) At the time when a customer is assigned to service, that time and the 

identity of the customer that x* removes from s’(t) are added to rt and e,, 
respectively. 

We have defined a policy ?r * that exhibits the same behavior as a (i.e., V,,(a*, 
s) = VN(r, s), N= 1, 2, . . . and V/(X*, s) = V(r, s)) provided that d(t) and C?r(t) 
exhibit the same behavior. This latter statement is true if E,*(t) > E,(t) for input 
sample s. This last dominance relation can be shown to hold for any input sample 
s by an induction argument on the times at which a customer enters or leaves the 
system for every input sample s. This argument is similar to the one used in 
Theorem 1 and is omitted. 

Finally, taking the expectation over all input samples yields VN(~*) = 
V,(a) and V(?r*) = V(n). Q.E.D 

COROLLARY 1. If there exists an optimal policy r for the G/G/l + G queue, 
then there exists a STEI policy that is optimal. 

PROOF. This is a consequence of the last theorem. 

We conclude this section with a proof that the STE policy is optimal for the 
discrete time G/D/l + G queue when the service time is exactly one time unit. 
This is of practical interest because many data communication systems are modeled 
by such queues. 

THEOREM 3. The STE policy is optimal for the discrete time G/D/ 1 + G queue 
where the service time is exactly one time unit. 

PROOF. Consider any STEI policy P. We construct a sequence of policies 
(possibly infinite in number) r. = a, rl, . . . , ri, . . . , such that (1) ?T; is an STEI 
policy,i=O, I,... , (2) the performance is nondecreasing function of i, and (3) if 
the sequence is infinite in number, then lim. ,+, rTi is the STE policy; otherwise, the 
last policy, say r,,, is the STE policy. 

Before we provide the method for constructing the above sequence of policies, 
we introduce some terminology. First, define Prefix(t, s) = (a(t), d(t)) where a(t) 
and d(t) are the following ordered subsets of a and d, a(t) = (ai 1 ai E a, ai I t 1 and 
d(t) = (di I d; E d, a, 5 t). In addition, if 5 is a set of input samples, then define 
Prefix(t, 27) = (Prefix(t, s) I s E Z?‘). Next define a function g(*, s) whose value is 
the time at which policy r inserts the first idle time when the input sample is s. 
Note that, if g(r, s) = t, then g(r, Prefix(t, s)) = t. Also note that g(r, s’) = t for 
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each input sample s ’ such that Prelix(t, s ‘) = Prefix(t, s). Last, define g(x) = 
min,( g(r, s)J. Here g(r) is the earliest time that 7r inserts an idle time for any 
sample path. 

We construct xi+, from 7~; in the following way. Choose the set of input samples 
Z = 1s 1 g(7ri, s) = g(r;)). Define 9(t) = Prefix(t, 5). We require 7~;+~ to behave 
exactly like r; for 0 I t < g(ri). At time g(a;), 7rj+, always schedules the customer 
c closest to its deadline (unlike ai which may insert an idle time). At time g(ri) < 
t, 7rifl behaves exactly like 7ri, except whenever Pi schedules the customer c that 
ri+l previously scheduled at time g(ri). At this time, xi+1 does nothing. Policy pi+ I 
exhibits several properties. 

(1) ri+l is an STEI policy. 
t2) gbi+ 1) > g(ri)- 

(3) ri+l behaves exactly the same as xi on all input samples s B g VN(ai, s) = 
Kdai+ I 9 S). 

(4) Kv(?Ti+l, S) 1 V~(7r;, S) for all S E 57 

As a result of these properties we have VN(ri+l) L I’N(ri), N L 0 and I/(ri+l ) 2 
V/(m). 

The above procedure can be applied repeatedly resulting in a sequence of policies 
?T,, i L 0 (rO = r), such that g(ri) is a strictly increasing function of i, V(T,) is a 
nondecreasing function of i. Therefore, the limiting policy is the STE policy that 
has as good or better performance than 7~. Q.E.D 

4. Computation of Loss 

In this section we compare the performance of the STE scheduling policy with that 
of the FCFS scheduling policy for the M/D/l queue, where the service time is 
taken to be one unit of time. We consider the case in which there are two classes 
of customers. Customers of class i arrive according to a Poisson process with 
parameter Xi, i = 1, 2. Class 1 customers have a fixed deadline of L time units 
(L > 0), whereas class 2 customers have a fixed deadline A4 time units longer, that 
is, a deadline of (L + M) time units (M 2 0). In the remainder of this section we 
outline the procedure used to compute the losses under the FCFS and STE policies, 
respectively. We begin by considering the FCFS policy. 

Our method for computing losses under the FCFS policy for an M/D/l queue 
with customers with two possible deadlines is similar to that used in [4] for the 
M/G/l/K queue. It involves modeling the system as a Markov chain, where the 
state is defined as (M, ), where MI (M, I L + M) denotes the number of customers 
in the queue. A more complete description is given in [lo]. The loss, expressed as 
a percentage of the total arrival rate, can be computed for various values of X, , X2, 
L, and M (see Table I). 

We used a somewhat different method to compute the loss for the same system 
when the STE policy was employed. The system operating under STE was modeled 
as a continuous time, continuous state Markov process with a two-dimensional 
state space. This Markov process was approximated as a discrete time, discrete 
state Markov chain by discretizing time. Specifically, we approximated each time 
unit by N discrete time units. We approximated the Poisson arrival process as a 
Bernoulli arrival process on these discrete time points with parameters p1 = X,/N 
and p2 = X2/N for class 1 and class 2 arrivals, respectively. This Bernoulli 
approximation has the effect of producing a finite state process. The accuracy of 
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TABLE I. CUSTOMER Loss USING FCFS AND STE POLICIES FOR AN M/D/l 
QUEUE 

L L+M 
Percentage loss 

Type 1 Type 2 FCFS STE WI 

0.4 
0.1 
0.2 
0.3 
0.4 
0.2 
0.1 
0.3 
0.2 
0.2 
0.4 

0.4 
0.1 
0.2 
0.3 
0.4 
0.2 
0.3 
0.1 
0.2 
0.2 
0.4 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 

1 19.96 19.88 (60) 
2 1.05 0.73 (70) 
2 4.26 3.33 (6’3) 
2 9.35 8.02 (60) 
2 15.73 14.33 (60) 
3 4.06 2.35 (50) 
3 2.36 0.98 (50) 
3 5.44 4.22 (50) 
4 4.04 2.05 (50) 
2 1.38 1.37 (50) 
2 10.33 10.17 (50) 

this approximation improves with increasing values of N. A reward was associated 
with each state of the resulting discrete time Markov chain. The rewards were 
chosen so as to lead to a straightforward computation of the throughput. The 
resulting Markov chain with reward structure was then solved using the value 
iteration algorithm [6]. Further details are given in [lo]. We can compute the value 
of the loss for various values of X1, XZ, L, and M. For values of A4 = 0, the STE 
policy is the same as the FCFS policy. Therefore, we can check the accuracy of the 
method used to compute the loss under the STE policy by comparing it with that 
used to obtain the loss under the FCFS policy. For the values of N we utilized, the 
error never exceeded 0.2% of the throughput (see Table I). Losses were not 
computed for values of L and M larger than that shown in Table I because of the 
increased computation time and memory space required to obtain reasonably 
accurate results. 

According to Corollary 1, the optimal scheduling policy for the M/D/l queue 
belongs to the STEI class of policies. Though we considered some limited types of 
STEI policies, we were unable to improve on the losses obtained for an STE policy. 
The STE policy led to lower values of loss than the FCFS policy whenever M > 0. 
Indeed, the improvement of the STE policy over the FCFS policy tends to increase 
with M, the difference in deadlines between the two types of customers. 

5. Summary 
We have shown that, for a large class of queues, the best scheduling policies for 
minimizing the loss of impatient customers belong to the class of STEI policies. 
The STE policy is optimal for a class of queues if no unforced idle times are 
allowed. In addition, the STE policy is optimal for the discrete time G/D/l + G 
queue, where a service time is one time unit, independent of whether or not 
unforced idle times are allowed. These results are illustrated by giving numerical 
values for the losses under various policies for the M/D/l queue. 
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