
On Generalized Max-Min Rate Allocation
and Distributed Convergence Algorithm

for Packet Networks
Y. Thomas Hou, Senior Member, IEEE, Shivendra S. Panwar, Senior Member, IEEE, and

Henry H.-Y. Tzeng

Abstract—This paper considers the fundamental problem of bandwidth allocation among flows in a packet-switched network. The

classical max-min rate allocation has been widely regarded as a fair rate allocation policy. But, for a flow with a minimum rate

requirement and a peak rate constraint, the classical max-min policy no longer suffices to determine rate allocation since it is not

capable of supporting either the minimum rate or the peak rate constraint from a flow. In this paper, we generalize the theory of the

classical max-min rate allocation with the support of both the minimum rate and peak rate constraints for each flow. Additionally, to

achieve generalized max-min rate allocation in a fully distributed packet network, we present a distributed algorithm that uses a

feedback-based flow control mechanism. Our design not only offers a fresh perspective on flow marking technique, but also advances

the state-of-the-art flow marking technique favored by other researchers. We provide proof that such a distributed algorithm, through

asynchronous iterations, will always converge to the generalized max-min rate allocation under any network configuration and any set

of link distances. We use simulation results to demonstrate the fast convergence property of the distributed algorithm.

Index Terms—Max-min rate allocation, minimum rate, peak rate, centralized algorithm, distributed algorithm, convergence, flow

control, packet networks.
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1 INTRODUCTION

Afundamental problem in a packet-switched network
is bandwidth (or rate) allocation among flows such

that network bandwidth is “optimally” utilized. Such
optimality usually includes the following two compo-
nents: 1) efficiency—network bandwidth should be used as
much as possible by the flows and 2) fairness—network
bandwidth should be shared according to some fairness
criterion.

The classical max-min rate allocation has been widely
regarded as an optimal rate allocation policy [2]. The classical
max-min approach achieves fairness by maximizing the
minimum flow rate allocation in the network without
exceeding a link’s capacity. It follows that, under such a
max-min rate allocation, each flowmust pass through at least
one bottleneck link [2]. The classicalmax-min rate allocation, in
its current form [2], assumes a zero minimum rate require-
ment andnopeak rate constraint.However, in practice,many
media-rich real-time network applications require a certain
minimum bandwidth in order to guarantee a minimum
acceptable quality of service. Most of these multimedia
applications are equipped with rate-adaptive encoders. De-
pending on available bandwidth in the network, these

encoders can adjust their output rate to further enhance an
application’s quality. Additionally, in practice, there are
situationswhere that is also anupper bound (peak rate) on an
application’s output rate. For example, the network’s inter-
face card (e.g., a modem) may impose a physical limit on the
speed of the encoder’s output rate. As another example, in a
corporate network, where the network access link is shared
by all users, a peak rate constraint may be imposed (through
bandwidth management software at the access link) on each
individual user. Consequently, a practical network applica-
tion may have both MR and PR constraints. It is, therefore,
essential to devise a rate allocation policy that will optimally
support both of these constraints.

This paper presents a fundamental study on network
bandwidth allocation based on the classical max-min
approach. Our main contributions are twofold: 1) Centra-
lized theory: We generalize the theory of the classical max-
min rate allocation with minimum rate (MR) and peak rate
(PR) support (the so-called generalized max-min (GMM)
rate allocation); 2) Distributed algorithm: We have designed a
feedback-based distributed algorithm that is proven to
converge to GMM through asynchronous iterations under
any network configuration and any set of link distances. In
particular, our design of the distributed algorithm offers a
fresh perspective on flow marking technique. By exploring
the limits of flow marking technique by other researchers,
we generalize such a technique and make it more flexible.
Consequently, our new marking technique can be used to
design a broader class of distributed algorithms.

Prior efforts on extending the classical max-min rate
allocation with minimum rate support include the so-called
MR-add policy and theMR-prop policy [20]. Both policies first
guarantee the minimum rate of each flow. Under MR-add,
remaining network bandwidth is shared among all flows
using the max-min policy, i.e., equal weight for all flows;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 5, MAY 2004 401

. Y.T. Hou is with The Bradley Department of Electrical and Computer
Engineering, Virginia Tech, 340 Whittemore Hall (0111), Blacksburg, VA
24061. E-mail: thou@vt.edu.

. S.S. Panwar is with the Department of Electrical and Computer
Engineering, Polytechnic University, Six Metrotech Center, Brooklyn,
NY 11201. E-mail: panwar@catt.poly.edu.

. H.H.-Y. Tzeng is with Nokia, Networks Division, 313 Fairchild Drive,
Mountain View, CA 94043. E-mail: Henry.Tzeng@nokia.com.

Manuscript received 15 June 2002; revised 12 May 2003; accepted 21 Sept.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 115710.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



under MR-prop, remaining network bandwidth is shared
amongall flowsusinganMR-proportionalmax-minpolicy. In
[8], a generic weight-based network bandwidth allocation
policy, called Weight-Proportional Max-Min (WPMM), was
proposed to generalize the MR-add and MR-prop policies.
UnderWPMM, each flow is associatedwith a genericweight,
which is decoupled (or independent) from its MR. After first
allocating each flowwith itsMR, theWPMMpolicy shares the
remainingnetworkbandwidthamongall flowsbasedoneach
flow’sweight.While theMR-add,MR-prop, andWPMMrate
allocations can all support MR for each flow, they are merely
trivial extensions of the classical max-min approach. In
contrast, the Generalized Max-Min (GMM) rate allocation
presented in this paper generalizes the classicalmax-min rate
allocation by exploring its underlying principle.

The second part of this paper is devoted to the problem
of designing a distributed algorithm that converges to
GMM rate allocation. The motivation for this effort is based
on the observation that a centralized algorithm will require
global information about the network, which is difficult to
maintain and manage in a large scale network. Thus, it is
critical to develop a distributed implementation to achieve
GMM rate allocation. There has been extensive previous
work on the design of distributed algorithms to achieve the
classical max-min rate allocation. Early algorithms by
Hayden [6], Jaffe [10], and Gafni [5] required synchroniza-
tion of all nodes for each iteration. Mosely’s work in [14]
was the first distributed algorithm allowing asynchronous
computation. Unfortunately, this algorithm could not offer
satisfactory convergence performance. Later, Ramakrishnan
et al. [15] proposed using a single bit to indicate congestion
and achieve max-min. But, due to the binary nature of this
algorithm, the source’s rate exhibited oscillations. In the
past few years, research in ATM ABR flow control has led
to many contributions to the design of distributed algo-
rithms to achieve the classical max-min (see, e.g., [4], [11],
[12], [16], [17], [19]). In particular, the seminal work by
Charny et al. [4], also known as the Consistent Marking (CM)
algorithm, was one of the few algorithms that were proven
to converge to the classical max-min.

As we shall see in the second half of this paper, Charny
et al.’s Consistent Marking algorithm cannot be applied to
GMM rate allocation due to its intrinsic design limitation. In
particular, if we apply Consistent Marking in a network for
GMM rate allocation (with MR and PR), the rate of each
flow will oscillate and never converge to any rate allocation
policy (see Section 3.2 for more details). In this paper, we
explore the limits of the Consistent Marking technique and
propose a more general flow marking technique that
advances the existing Consistent Marking technique. We
show that our new flow marking technique can be used to
design a broader class of distributed convergence algo-
rithms, including that for the GMM rate allocation.

The remainder of this paper is organized as follows: In
Section 2,we first reviewkey results for the classicalmax-min
rate allocation. Then, we present the theory for the General-
izedMax-Min (GMM) rate allocationwith the support ofMR
andPRfromeach flow.Section3showshowwegeneralize the
Consistent Marking technique. We also show how a dis-
tributed algorithm for GMM rate allocation can be designed
by applying the generalized technique. In Section 4,we give a
correctness proof of the convergence of the distributed
algorithm. Section 5 shows simulation results for the dis-
tributed algorithm on several network configurations and
demonstrates the fast convergence property of the algorithm.
Section 6 concludes this paper.

2 GENERALIZING THE CLASSICAL

MAX-MIN THEORY

In this section, we generalize the classical max-min rate
allocation with MR and PR constraints. In Section 2.1, we
first summarize key results of the classical max-min rate
allocation. Section 2.2 presents the theory of Generalized
Max-Min (GMM) rate allocation.

2.1 A Brief Review of Classical Max-Min

In our model, a network of switches are interconnected by a
set of links L. A set of flows s 2 S traverses one or more links
inL; each flow is allocated a specific rate rs. Denote S‘ the set
of flows traversing link ‘ 2 L. Then, the (aggregate) allocated
rateF‘ on link ‘ isF‘ ¼

P
s 2 S‘

rs. LetC‘ be the capacity of link
‘ 2 L. A link ‘ is saturated or fully utilized if F‘ ¼ C‘. A rate
vector r ¼ frs j s 2 Sg is feasible if the following two con-
straints are satisfied: 1) rs � 0 for all s 2 S and 2) F‘ � C‘ for
all ‘ 2 L.

A rate vector r ¼ frs j s 2 Sg ismax-min if it is feasible, and
if, for each flow s, one cannot generate a new feasible rate
vector by increasing the allocated rate rs without decreasing
the allocated rate of some other flow t with a rate rt already
less than or equal to rs in the rate vector r. Formally, the
classical max-min rate allocation can be defined as [2]: A rate
vector r ¼ frs j s 2 Sg is max-min if it is feasible and if, for
each s 2 S and every feasible rate vector r̂r ¼ fr̂rs j s 2 Sg in
which r̂rs > rs, there exists some flow t 2 S such that rs � rt
and rt > r̂rt.

Given a feasible rate vector r ¼ frs j s 2 Sg, a link ‘ 2 L
is a bottleneck link with respect to r for a flow s 2 S‘ if F‘ ¼
C‘ and rs � rt for all flows t 2 S‘. A feasible rate vector
r ¼ frs j s 2 Sg is max-min if and only if each flow s 2 S
has a bottleneck link with respect to r.

Definition 1. Given a max-min rate vector r ¼ frs j s 2 Sg and
suppose that link ‘ 2 L is a max-min bottleneck link with
respect to r. Denote �‘ the max-min bottleneck link rate at ‘.
Then, �‘ satisfies

�‘ ¼ max
s2S‘

rs ¼
C‘ �

P
i2M‘

ri

jU‘j
;

where U‘ denotes the set of flows that are bottlenecked at link

‘,1and M‘ denotes the set of flows that traverse link ‘ but are

bottlenecked at some other link and ri < �‘ for i 2 M‘.

The following iterative steps describe a centralized

algorithm to determine max-min rate allocation [2]:

1. Start the rate of each flow with zero.
2. Increase the rate of each flow currently having the

smallest rate until some link becomes saturated.
3. Remove those flows that traverse saturated links and

the capacity associated with these flows from the
network.

4. If there is no flow left, the algorithm terminates;
otherwise, go back to Step 2 for the remaining flows
and remaining network capacity.

It can be shown that there exists a unique rate vector that

satisfies the max-min rate allocation.
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2.2 Generalized Max-Min Rate Allocation

Before we formally define GMM rate allocation, we use the
following example to illustrate its concept. For generality,
we assume that all links have one unit of capacity. In the
peer-to-peer network configuration (Fig. 1), the output port
link (Link12) of switch 1 (SW1) is the only potential
bottleneck link for all flows. In the classical max-min case
where there are no MR and PR constraints for each flow, the
centralized max-min rate allocation algorithm allocates each
flow with a rate of 1=3. Now, let the MR requirement and
PR constraint for each flow be as listed in Table 1. We
describe the iterative steps of a centralized algorithm under
the GMM rate allocation.

Algorithm 1: (A Centralized Algorithm for GMM—An
Informal Description)2

1. Start the rate of each flow with its MR, and sort all
flows in the order of increasing MR.3

2. Increase the rate of the flow with the smallest rate
among all flows until one of the following events
takes place:

a. The rate of such flow reaches the second
smallest rate among the flows.

b. The rate of such flow reaches its PR.
c. Some link saturates.

3. If some link saturates or the flow’s rate reaches its
PR in Step 2, remove the flows that either traverse
the saturated link or reach their PRs, respectively, as
well as the rates associated with these flows from the
network capacity.4

4. If there is no flow left, the algorithm terminates;
otherwise, go back to Step 2 for the remaining flows
and network capacity.

The above centralized algorithm for GMM rate allocation
enables us to complete the rate allocation problem for the
peer-to-peer network configuration (Fig. 1) with the MR
and PR constraints (Table 1), which we elaborate as follows.

Example 1 (A peer-to-peer network). In this example, we
compute the rate allocation problem for the peer-to-peer
network configuration (Fig. 1) with the MR and PR
constraints (Table 1). Fig. 2 shows these iterations as a
“water-filling” process.

. Initialization: As shown in Fig. 2, we start the rate
of each flow with its MR (shown in the darkest
shaded areas in Fig. 2).

. First iteration: Since the rate of s3 (0.05) is the
smallest among all flows, we increase it until it
reaches the second smallest rate, which is 0.1 (s2).

. Second iteration: The rates of both s2 and s3 being
0.1, we increase them together until s2 reaches its
PR constraint of 0.25. Remove s2 (with a rate of
0.25) from future iterations, and we now have
rates of 0.40 and 0.25 for s1 and s3, respectively,
with a remaining capacity of 0.10 on Link 12.

. Third iteration: Since s3 has a smaller rate (0.25)
than s1 (0.4), we increase the rate of s3 to 0.35 and
Link12 saturates. The final rate allocations for s1,
s2, and s3 are 0.40, 0.25, and 0.35, respectively.

The above example illustrates the basic concept of GMM
rate allocation: always maximize the minimum rate among
all flows, while, at the same time, satisfying each flow’s PR
constraint and link capacity constraint. Therefore, GMM
rate allocation preserves the basic principle as the classical
max-min. Denote MRs and PRs the minimum rate require-
ment and the peak rate constraint for each flow s 2 S. For
feasibility, we must have the following assumption.

Assumption 1. The sum of all flows’ minimum rate traversing
any link is less than the link’s capacity, i.e.,

P
s 2 S‘

MRs < C‘

for every ‘ 2 L.

This condition can be enforced by admission control
during call setup time. It is worth pointing out that we use
the strict inequality in Assumption 1. Although this may not
be necessary for the centralized algorithm, it is essential to
maintain stability in the the distributed algorithm and to
guarantee the existence of �n, which will be defined in
Section 4.

We say that a rate vector r ¼ frs j s 2 Sg isGMM-feasible if
the following two constraints are satisfied: 1) MRs � rs �
PRs for all s 2 S and 2) F‘ � C‘ for all ‘ 2 L. Formally, GMM
rate allocation can be defined as follows: A rate vector r ¼
frs j s 2 Sg is Generalized Max-Min (GMM) if it is GMM-
feasible and if, for every s 2 S and every GMM-feasible rate
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2. A formal mathematical description of this algorithm is given in
Algorithm 2.

3. In the case when there are multiple flows with the same MR, these
flows will be put into a set and will be considered jointly.

4. It is worth pointing out that the PR constraint can be considered by
introducing a virtual link of capacity PR at every source. That is, the PR for
a flow is equivalent to the capacity of the flow’s virtual access link.

Fig. 1. A peer-to-peer network.

TABLE 1
MR Requirement, PR Constraint, and GMM Rate Allocation of

Each Flow in the Peer-to-Peer Network Configuration

Fig. 2. Iterative steps in rate allocation as a “water-filling” process.



vector r̂r ¼ fr̂rs j s 2 Sg inwhich r̂rs > rs, there exists some flow
t 2 S such that rs � rt, and rt > r̂rt. Due to the GMM-
feasibility constraint, we define a new notion of bottleneck
link as follows.

Definition 2. Given aGMM-feasible rate vector r ¼ frs j s 2 Sg,
a link ‘ 2 L is a GMM-bottleneck linkwith respect to r for a flow

s 2 S‘ if F‘ ¼ C‘ and rs � rt for every flow t 2 S‘ for which

rt > MRt.

It is crucial to maintain strict inequality rt > MRt

(instead of rt � MRt) in the above definition. In Example 1,
according to Definition 2, Link12 is a GMM-bottleneck link
for both s1 and s3. On the other hand, there appears to be
potential ambiguity about what we should call the bottle-
neck link rate here. Note that flows s1 and s3 have different
rate allocation (0:4 for s1 and 0:35 for s3) and there should
be a unique bottleneck link rate at a bottleneck link. The
following definition removes this potential ambiguity.

Definition 3 (GMM-Bottleneck Link Rate). Given a GMM

rate vector r ¼ frs j s 2 Sg and suppose that link ‘ 2 L is a

GMM-bottleneck link with respect to r. Denote �‘ GMM-

bottleneck link rate at ‘. Then, �‘ satisfies

�‘ �
X
i2U‘

1þfMRi � �‘g þ
X
i2U‘

MRi � 1þfMRi > �‘g

¼ C‘ �
X
i2M‘

ri;

where 1þfeventg is an indicator function and is defined as 1 if
the event is true and 0 otherwise; U‘ denotes the set of flows
that are GMM-bottlenecked at link ‘; M‘ denotes the set of
flows that are 1) either GMM-bottlenecked at some other link
or have GMM rate allocation equal to their PRs, and 2) ri <
�‘ for i 2 M‘.

With Definition 3, it is easy to show that GMM-bottleneck
link rate at Link12 is 0.35 in Example 1. Also, note that, in the
special case when MRs ¼ 0 for every s 2 S, the GMM-
bottleneck link rate �‘ in Definition 3 becomes: �‘ � jU‘j =
C‘ �

P
i2M‘

ri, or �‘ ¼ ðC‘ �
P

i2M‘
riÞ=jU‘j, which is pre-

cisely the expression for the classical max-min rate allocation
at link ‘ (see Definition 1). Therefore, the classical max-min is
indeed a special case under the GMM rate allocation.

The following theorem links the relationship between
GMM rate allocation definition and the GMM-bottleneck
link definition (Definition 2). The proof is given in the
Appendix.

Theorem 1. A GMM-feasible rate vector r ¼ frs j s 2 Sg is
GMM if and only if each flow s 2 S has either a GMM-
bottleneck link with respect to r or a rate allocation equal its PR.

In the following algorithm, we present the formal
mathematical description of a centralized algorithm for
GMM rate allocation, which was informally described
earlier in Algorithm 1. We omit its correctness proof to
conserve paper space.

Algoritm 2 (A Centralized Algorithm for GMM Rate

Allocation)
Initial conditions: k :¼ 0, rð0Þs :¼ MRs for every s 2 S,
F

ð0Þ
‘ :¼

P
s2S‘

MRs for every ‘ 2 L;
k :¼ 1, Sð1Þ :¼ S, Lð1Þ :¼ L.

1. Sort all the flows in SðkÞ into m sets (1 � m � jSðkÞj):
u1; u2; � � � ; um, such that a) each flow in the same
set has the same rate and b) rates in these sets are in
increasing order, i.e., rs2u1 < rt2u2 < � � � < ry2um .

2. Denote n
ðkÞ
‘ as the number of flows s 2 u1 traversing

link ‘, for every ‘ 2 LðkÞ. Calculate aðkÞ as follows:

aðkÞ :¼

min
n

min
‘ traversed by s 2u1

ðC‘�F
ðk�1Þ
‘

Þ
n
ðkÞ
l

;

ðrt2u2 � rs2u1Þ;

min
s2u1

ðPRs � rðk�1Þ
s Þ

o
if m > 1;

min
n

min
‘ traversed by s 2u1

ðC‘�F
ðk�1Þ
‘

Þ
n
ðkÞ
l

;

min
s2u1

ðPRs � rðk�1Þ
s Þ

o
if m ¼ 1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

3.

rðkÞs :¼ rðk�1Þ
s þ aðkÞ if s 2 u1;
rðk�1Þ
s otherwise:

�

4.

F
ðkÞ
‘ :¼

X
s 2 S‘

rðkÞs ; for every ‘ 2 Lk:

5. Lðkþ1Þ :¼ f‘ j C‘ � F
ðkÞ
‘ > 0; ‘ 2 LðkÞg.

6. Sðkþ1Þ :¼ fs j s does not traverse any link ‘ 2 ðL �
Lðkþ1ÞÞ and rðkÞs 6¼ PRsg.

7. k :¼ kþ 1.
8. If SðkÞ is empty, then rðk�1Þ ¼ frðk�1Þ

s j s 2 Sg is the
rate vector satisfying GMM rate allocation and the
algorithm terminates; otherwise, go back to Step 1.

It is worth noting that, during the iterations of Algorithm
2, if m > 1 in Step 1, then the rate values in u2; � � � ; um

correspond to the MRs of flows in these sets. Also, starting
from the second iteration (k ¼ 2), the sorting procedure in
Step 1 only requires minor updates based on the sorted sets
from the previous iteration. It also follows from Definition 3
and Algorithm 2 that the following property holds for
GMM rate allocation: If a rate vector r ¼ frs j s 2 Sg is
GMM, then the rate allocation for flow s 2 S can only be 1) a
rate equal to its MR or 2) a rate equal to its PR or 3) a rate
equal to its GMM-bottleneck link rate. It can be shown that
there exists a unique rate vector r ¼ frs j s 2 Sg satisfying
GMM rate allocation.

We use the following multinode example to illustrate the
concept of GMM-bottleneck link rate, which follows an
ascending order after the iterations in Algorithm 2.

Example 2 (A Three-Node Network). In this network
configuration (Fig. 3), the output port links of SW1
(Link12) and SW2 (Link23) are potential GMM-bottle-
neck links. The MR requirement and PR constraint for
each flow are listed in Table 2. For brevity, we will only
list the iterations of Algorithm 2 in Table 3, with a
graphical display in Fig. 4. The GMM-bottleneck link rate
at Link12 is 0.425, which was reached at the end of the
fourth iteration, and GMM-bottleneck link rate at Link23
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is 0.575, which was reached at the end of the fifth
iteration, and 0:425 < 0:575. In general, by the operation
of Algorithm 2, a GMM-bottleneck link rate obtained at a
later iteration for some link is greater than a GMM-
bottleneck link rate obtained at an earlier iteration for
some other link.

We have thus completed the centralized theory for GMM
rate allocation. In the rest of the paper, we address the more
challenging problem of designing a distributed algorithm to
achieve GMM rate allocation in a packet network.

3 A DISTRIBUTED CONVERGENCE ALGORITHM

3.1 Background

We will employ a feedback-based flow control mechanism
similar to the ATM ABR service for our distributed
algorithm [1]. Such a feedback-based flow control mechan-
ism for a flow is shown in Fig. 5. As we shall soon find out,
the convergence property of our algorithm does not depend
on the use of the ATM ABR standard. In fact, any flow
control mechanism that provides cooperation among the
source, destination, and network nodes for each flow can be
used to deploy our distributed algorithm. The reason why
we choose to use an ATM ABR-like flow control mechanism
here is that this mechanism is well documented and
understood by the networking community. It is interesting
to note that max-min rate allocation has recently found
applications in VPN, MPLS, and even WDM networks [18].
Therefore, we expect that the underlying theories and
algorithms presented in this paper on GMM rate allocation
will be relevant to current and future developments in
networking technology.

As shown in Fig. 5, special control packets, called
Resource Management (RM) cells under ATM ABR, are
inserted among the regular data packets to exchange
information among network components. A source sets
the fields in the forward RM packets to inform the network
about the source’s rate information (i.e., MR, PR, etc.).
While the RM packets traverse switch by switch toward to
the destination, the network (switches) extracts the in-
formation from the RM packet (through its fields) and
performs rate calculation. Upon arriving at the destination,
an RM packet is returned back toward the source. Each

switch then sets the appropriate fields in the returning RM
packet to convey rate allocation information to the source.
When a backward RM packet arrives at the source, the
source adjusts its rate based on the feedback information in
the received RM packet.

3.2 Approach

There have been extensive studies on using a feedback-
based flow control mechanism (Fig. 5) for the classical max-
min rate allocation (see, e.g., [4], [11], [12], [16], [17], [19]). In
particular, Charny et al. [4] made a seminal contribution by
introducing the so-called Consistent Marking technique in
the distributed algorithm design. Since our distributed
algorithm is based on this work, we briefly summarize
Charny et al.’s work here.

In Charny et al.’s algorithm, each switch monitors its
traffic by keeping track of the state information for each
traversing flow. Also, each output port of a switch
maintains a variable, called the advertised rate, to calculate
the max-min rate allocation for each flow. When an RM
packet arrives at the switch, the current rate (CR) value of
the flow is stored in a table. If this CR value is less than or
equal to the current advertised rate, then the associated
flow is assumed to be bottlenecked either at this link or
elsewhere, and a corresponding bit for this flow is marked
at the table. The following equation is then used to update
the advertised rate, ’‘, at link ‘.

’‘ :¼
C‘ �

P
i2M‘

ri‘
n‘ � jM‘j

; ð2Þ

whereC‘ is the capacity of link ‘,M‘ is the set of flowsmarked
at link ‘, ri‘ is the current rate (CR) value of flow i that is just
recordedby link ‘,n‘ is the number of flows at link ‘, and jM‘j
is the number of marked flows at link ‘. Then, the table is
examinedagain. For eachmarked flow, if its recordedCR(i.e.,
ri‘) is larger than this newly calculated advertised rate ’‘, this
flow is then unmarked. Finally, the advertised rate is
calculated again. The ER field of an RM packet is then set to
theminimumof all advertised rates along its traversing links.
Charny et al. [4] showed that, eventually, the rate for each
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TABLE 2
MR Requirement, PR Constraint, and GMM Rate Allocation for

Each Flow in the Three-Node Network

TABLE 3
Iterations of Using the Centralized Algorithm for GMM Rate Allocation for the Three-Node Network

Fig. 3. A three-node network configuration.



flow converges to the max-min rate allocation and is marked
along every link that it traverses.

We now consider how to generalize the Consistent
Marking technique for GMM rate allocation [9]. To start
with, it is apparent that the advertised rate calculation in (2)
has to be generalized for GMM-bottleneck link rate (see
Definition 3). But, the key problem remains: how to perform
marking on each traversing flow at a node so that the rate
allocation can converge to GMM rate allocation. We use the
following simple example to illustrate that Charny et al.’s
original technique will not work here.

Example 3 (A Simple Counter Example). Consider the
single bottleneck network in Example 1 with MR/PR
constraints in Table 1. If wemark a flowwhen its CR is less
than or equal to the advertised rate (as in the Consistent
Marking algorithm), the rate of each flowwill oscillate and
never converge to any rate allocation policy. To show that
this is indeed the case, suppose that Charny et al.’s
marking technique can converge to the optimal GMM rate
allocation. Then, the advertised rate’‘ for this single link ‘
(Link12) should satisfy ’‘ � 0:4 (otherwise, flow s1 will
not be marked by the definition of Charny et al.’s
algorithm). We call this the initial state; the algorithmwill
enter the following iterations:

. Since the PR for s3 is 0.5, s3will increase its rate to
’‘, which is greater than or equal to 0.4.
Consequently, the sum of rates for all flows will
exceed link capacity. Then, all flows will be
unmarked and ’‘ is set to 0 by Charny et al.’s
marking algorithm.

. Now, each flow transmits at its MR and the
advertised rate ’‘ is recalculated to ’‘ ¼ 0:3 based
on the GMM-bottleneck link rate definition in
Definition 3.

. Next, flow s2 will increase its rate to 0.25 (its peak
rate) and will be marked when its RM packet
arrives at the link. The new value for ’‘ becomes
’‘ ¼ 0:35 based on Definition 3.

. Now, flow s3 will increase its rate to 0.35 and will
be marked. The new ’‘ is recalculated to ’‘ ¼ 0:4.

. Next, flow s1 will also be marked when its RM
packet arrives at the link. We have just returned
to the exact same initial state where we started.
The loop will continue; ’‘ will keep oscillating
and will never converge.

The difficulty here is that, under the generalized
definitions of GMM-bottleneck link and GMM-bottleneck
link rate, we need to consider the unique MR requirement
from each flow. On the other hand, under Charny et al.’s
flow marking algorithm, a flow will be considered to have
converged to its expected rate allocation only if it is marked;
consequently, upon convergence, all flows are expected to
be marked. Clearly, such a marking technique will break
here due to the new definition of GMM-bottleneck link rate.
In particular, since such MR requirements are ordered in a
nonlinear fashion, the rate allocation behaves like “water-
filling” under the centralized algorithm, and GMM-bottle-
neck link rate could be smaller than the rate of some flows.

To overcome this difficulty, we must reexamine
Charny et al.’s flow marking technique. We first offer a
deep understanding of what minimal requirements are
needed to make a flow marking algorithm converge to
max-min. Under Charny et al.’s algorithm, the purpose of
marking flows is to distinguish the sessions into two
separate groups (i.e., those that have already converged
and those that are currently undergoing an iterative
convergence process). Since such a marking technique
will not work for GMM rate allocation, we ask the
following question: What is the most essential component
in this technique that can bring a distributed algorithm to
converge to max-min? Our investigation of this question
led us to significantly depart from Charny et al.’s original
technique.

We find that, in Charny et al.’s algorithm, it is overly
restrictive to require marking of all sessions that traverse a
bottleneck link. Although this technique makes it easier to
comprehend and develop a correctness proof in the case of
max-min, it severely limits the broader applicability of such a
marking technique. In particular, for max-min, we find that a
flowtraversing itsownmax-minbottleneck linkdoesnotneed
to be marked at that link. Only flows bottlenecked elsewhere
need to be marked. Although this finding appears counter-
intuitive when we consider convergence issues, it becomes
easy to understand if we notice the following: In order to
calculate themax-min bottleneck link rate at a saturated link,
we only need to identify flows that are bottlenecked else-
where, rather than its own bottleneck link. Another way to
look at this situation is that, at a node, all that we need is the
information to distinguish between the set of marked flows
(bottlenecked elsewhere) and the set of unmarked flows that
arepotentiallybottleneckedat thisparticularnode. In the case
of GMM rate allocation, such generalization is essential to
coping with the difficulties associated with GMM-bottleneck
link rate definition, which in fact mandates that, at a node,
only sessions that are GMM-bottlenecked elsewhere can be
marked, while all other sessions must not be unmarked.
Clearly, such a “minimum-effort” marking scheme is much
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Fig. 4. Graphical display of rate allocation for each flow at each iteration

in the three-node network.

Fig. 5. A feedback-based flow control mechanism.



more flexible thanCharny et al.’s original scheme. It turns out
that this is the key to designing a distributed convergence
algorithm for GMM rate allocation. It should be noted,
though, that such flexibility brings in substantial complexity
inkeeping trackof the state of each flowalongapath,which in
turn adds substantial difficulty in the convergence proof.

3.3 A Distributed Convergence Algorithm for GMM

Based on our revised flow marking technique, we present a
distributed algorithm for GMM rate allocation. This
distributed algorithm includes an algorithm for the end
system (source and destination) and an algorithm for each
switch along the path. We first specify the algorithm for the
end system, where the source variables and RM fields are
defined in Table 4.

Algorithm 3: (End System Behavior)
Source Behavior: The source starts to transmit at AR :¼ IR,

with IR � MR. For every NRM transmitted data packets, the

source sends a forward RM(CR, MR, ER) packet with:

CR :¼ AR; MR :¼ MR; ER :¼ PR. Upon receipt of a

backward RM(CR, MR, ER) packet from the destination, the

AR at the source is adjusted to: AR :¼ ER.

Destination Behavior: Upon receiving an RM packet, the

destination returns it back toward the source.

The core component in the distributed convergence
algorithm resides in the design of the switch algorithm.
Basically, we need to calculate GMM-bottleneck link rate at
each node (see Definition 3) so that we can properly place
flows at a node into two sets: the set of flows GMM-
bottlenecked elsewhere and the set of flows GMM-
bottlenecked at this node. We assume a simple first-in-
first-out (FIFO) scheduling discipline at each node.

In our algorithm, a switch maintains a table at each of its
output ports (a FIFO queue) and keeps track of the state
information for each traversing flow. More specifically, the
per-flow table consists of a linked list of records, each of
which is for a particular flow and contains several fields
(see Table 5). In particular, ri‘ is the rate of flow i 2 S that is
most recently recorded when an RM packet of flow i passes
link ‘. For each RM packet, the ri‘ is independent of link ‘
along the path. But, for two different (even consecutive)
RM packets for flow i along the same path, one RM packet
arriving at link k and the other arriving at link ‘, it is
possible that the rate rik and ri‘ are different (due to rate
adaptation at the source). For clarity, we use ri‘ to indicate
the rate from the most recent RM packet that has just
traversed link ‘. In Table 5, we also list several other
parameters or variables that are maintained at a node,
which will be used in our distributed algorithm.

We now describe the switch algorithm as follows: The
initial conditions for each ‘ 2 L are set to: S‘ :¼ ;; n‘ :¼ 0;
’‘ :¼ C‘.

Algorithm 4: (Switch Behavior)

Upon the receipt of a forward RM(CR, MR, ER) packet {

if RM packet signals flow i’s termination {

S‘ :¼ S‘ � fig; n‘ :¼ n‘ � 1;

/* Update advertised rate ’‘ and flow marking

status. */

table_update();

}

if RM packet signals a new flow i’s initiation {

/* Insert a new record for this flow in the table

(a linked list of records) such that the MR fields of

the linked list of records are in increasing order,5

i.e., MR½1� � � � � � MR½i� 1� � MR½i�
� MR½iþ 1� � � � � � MR½jU‘j�. */

S‘ :¼ S‘ [ fig; n‘ :¼ n‘ þ 1;

bi‘ :¼ 0; ri‘ :¼ CR; MRi :¼ MR;

/* Update advertised rate ’‘ and flow marking

status. */

table_update();

}

else /* RM packet belongs to an ongoing active flow i.

*/ {

ri‘ :¼ CR;

if (ri‘ < ’‘), then bi‘ :¼ 1; /* Only mark a flow

that is GMM-bottlenecked elsewhere. */

/* Update advertised rate ’‘ and flow

marking status. */

table_update();

}

Forward RM(CR, MR, ER) toward its destination;

}

Upon the receipt of a backward RM(CR, MR, ER)

packet from the destination of flow i {

ER := maxfminfER; ’‘g; MRg;
Forward RM(CR, MR, ER) toward its source;

}
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TABLE 4
Notation for Source Variables and RM Fields

TABLE 5
State Information for Each Flow and

Other Parameters Maintained at a Node

5. Such a table creation scheme helps to eliminate sorting of MRs into
increasing order for ’‘ calculation.



table_update()

{

rate_calculation_1: use Algorithm 5 to calculate

advertised rate ’1
‘ ;

Unmark (i.e., set bi‘ ¼ 0) any flow i 2 S‘ with ri‘ � ’1
‘ ;

rate_calculation_2: use Algorithm 5 to calculate

advertised rate ’‘;

if ð’‘ < ’1
‘ Þ, then {

Unmark any flow i 2 S‘ with ri‘ � ’‘;
rate_calculation_3: use Algorithm 5 to calculate

advertised rate ’‘ again;

}

}

Note that, in the table_update() subroutine, both’1
‘ and’‘

follow the same’‘ calculation inAlgorithm5. For the classical
max-minpolicy,’‘ calculatedby rate_calculation_2 is always
greater than or equal to ’1

‘ and rate_calculation_3 is not
needed [4]. But, for GMM rate allocation, ’‘ calculated by
rate_calculation_2 can be less than ’1

‘ and, therefore, a third
roundofunmarkingand rate_calculation_3 is needed (see the
proof of Proposition 1 for such a case). The following
algorithm for ’‘ calculation is used in the table_update()
subroutine in the above switch algorithm.

Algorithm 5: (’‘ Calculation)

If n‘ ¼ 0, then ’‘ :¼ C‘;

Else if n‘ ¼ jM‘j, then ’‘ :¼ C‘ �
P

i2S‘
ri‘ þmaxi2S‘

ri‘;
Else /* i.e., n‘ 6¼ jM‘j. */ {

RC‘ :¼ C‘ �
P

i2M‘
ri‘;

if (RC‘ �
P

i2U‘
MRi), then ’‘ :¼ 0;

else /* i.e., RC‘ >
P

i2U‘
MRi. */ {

/* Due to our table creation scheme (see Algorithm 4

for the case when a new flow joins the networks), the

unmarked flows s 2 U‘ are already in increasing order

of their MRs, i.e., MR½1� � MR½2� � � � � � MR½jU‘j�.
There is no need to perform sorting as in the

centralized algorithm. */

k :¼ jU‘j; ’‘ :¼ RC‘

k ;

while (’‘ < MR½k�) {
RC‘ :¼ RC‘ �MR½k�;
k :¼ k� 1; ’‘ :¼ RC‘

k ;

}

}6

}

We now discuss the complexity of the switch algorithm.
Processing complexity is dominated by the table_up-

date() subroutine when processing a forward RM packet,
which isOðn‘Þ. It is possible to reduce processing complexity
by discretization on the range of the rate a flow can take,
which is like a class-based rate allocation within which flows
within the same class are allocated with the same rate.
Another approach is to develop aheuristic algorithm [13] that
removes the per-flow state information from the network’s
switches. Thesemeasures will help improve the scalability of
the switch algorithm, but at the expense of rate granularity or
convergence guarantee.

We observe that, by the operations of Algorithms 3 and
4, we have the following fact for the AR at the source and
the CR field in the RM packet:

Fact 1. For every flow s 2 S, the AR at the source and the CR
field in the RM packet are GMM-feasible, i.e., MRs �
ARs � PRs andMRs � CRs � PRs.

4 CONVERGENCE PROOF OF DISTRIBUTED

ALGORITHM

The convergence proof of our distributed algorithm follows
a similar induction approach to that in [4]. Our main
contribution here is to address how to handle the more
complex and difficult problem associated with the new flow
marking technique and the new definition of GMM-bottle-
neck link rate. The key notion used in the convergence
proof is the state of GMM-marking-consistent for flows at a
link, which is defined as follows.

Definition 4 (GMM-Marking-Consistent). Let M‘ be the set
of marked flows at link ‘ 2 L. We say that the marking of flows
at link ‘ 2 L is in the state of GMM-marking-consistent if
ri‘ < ’‘ for every flow i 2 M‘.

The following proposition shows the table marking
property at an output port after the switch algorithm is
performed for a traversing RM packet:

Proposition 1. After the switch algorithm is performed for an
RM packet traversing a link, the marking of flows at this link
is GMM-marking-consistent.

Proof. Let M‘ and U‘ be the set of marked and unmarked
flows at link ‘ just before rate_calculation_1 is per-
formed, respectively; ’1

‘ be the result for the advertised
rate by rate_calculation_1 in function table_update();
Z‘ � M‘ be the set of flows with ri‘ � ’1

‘ , i 2 Z‘, and,
therefore, are unmarked by the unmarking operation
after rate_calculation_1 in function table_update(); ’‘ be
the result for advertised rate by rate_calculation_2 in
function table_update().

Case 1: If not all flows in S‘ are marked before
rate_calculation_1, i.e., M‘ 6¼ S‘, then we have the
following two scenarios.

Subcase 1-A: During rate_calculation_1, if C‘ �
P

i2M‘

ri‘ <
P

i2U‘
MRi, then’1

‘ ¼ 0 (seeAlgorithm5). Thus, every
flow i 2 M‘will beunmarkedby theunmarkingoperation
and ’‘ calculated by rate_calculation_2 satisfies

’‘ �
X
i2S‘

1þfMRi � ’‘g þ
X
i2S‘

MRi � 1þfMRi > ’‘g ¼ C‘

and C‘ >
P

i2S‘
MRi by Assumption 1. Therefore, ’‘ �

’1
‘ ¼ 0 and GMM-marking-consistent property trivially

holds.
Subcase 1-B: During rate_calculation_1 for ’1

‘ , if

C‘ �
X
i2M‘

ri‘ �
X
i2U‘

MRi; ð3Þ

then ’1
‘ satisfies

’1
‘ �

X
i2U‘

1þfMRi � ’1
‘g þ

X
i2U‘

MRi � 1þfMRi > ’1
‘g

¼ C‘ �
X
i2M‘

ri‘:
ð4Þ
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6. The combined steps in the bracket for “else” are equivalent to
finding GMM-bottleneck link rate ’‘ for the set of unmarked flows U‘

such that ’‘ �
P

i2U‘
1þfMRi � ’‘g +

P
i2U‘

MRi � 1þfMRi > ’‘g =
RC‘. In the special case when MRi ¼ 0 for every i 2 U‘; ’‘ ¼ RC‘

jU‘ j , i.e.,
the max-min rate allocation.



After unmarking Z‘ � M‘ with ri‘ � ’1
‘ , i 2 Z‘, in

function table_update(), we have

C‘ �
X

i2ðM‘�Z‘Þ
ri‘ ¼ C‘ �

X
i2M‘

ri‘ þ
X
i2Z‘

ri‘

�
X
i2U‘

MRi þ
X
i2Z‘

MRi ¼
X

i2ðU‘[Z‘Þ
MRi:

The above inequality holds by (3) and by Fact 1,P
i2Z‘

ri‘ �
P

i2Z‘
MRi. In rate_calculation_2 for ’‘, we

have

’‘ �
X

i2ðU‘[Z‘Þ
1þfMRi � ’‘g þ

X
i2ðU‘[Z‘Þ

MRi � 1þfMRi > ’‘g

¼ C‘ �
X

i2ðM‘�Z‘Þ
ri‘:

ð5Þ

But, by (4),

C‘ �
X

i2ðM‘�Z‘Þ
ri‘ ¼ ðC‘ �

X
i2M‘

ri‘Þ þ
X
i2Z‘

ri‘

¼ ’1
‘ �

X
i2U‘

1þfMRi � ’1
‘g

þ
X
i2U‘

MRi � 1þfMRi > ’1
‘g þ

X
i2Z‘

ri‘:

ð6Þ

Since ri‘ � ’1
‘ and ri‘ � MRi for i 2 Z‘, to have (5) equal to

(6), we must have ’‘ � ’1
‘ . That is, ’‘ calculated by

rate_calculation_2 is greater than or equal to ’1
‘ by

rate_calculation_1. Since ri‘ < ’1
‘ for i 2 ðM‘ �Z‘Þ and

’1
‘ � ’‘, themarking of these flows continues to be GMM-

marking-consistent after rate_calculation_2 is performed.
Case 2: If all flows in S‘ are marked before rate_

calculation_1, i.e.,M‘ ¼ S‘, wehave two scenarios. Let the
RM packet for which the switch algorithm is performed
belong to flow s 2 S.

Subcase 2-A: If flow s was not marked before the RM
packet’s arrival at link ‘ and is marked because of this
RM packet’s arrival with rs‘ ¼ CR < ’‘, where ’‘ was
calculated by the switch algorithm for the previous
traversing RM packet and satisfies

’‘ ¼ C‘ �
X

i2S‘; i6¼s

ri‘:

After marking bs‘ ¼ 1, we have

C‘ �
X
i2S‘

ri‘ > 0: ð7Þ

During rate_calculation_1 for ’1
‘ :

’1
‘ ¼ C‘ �

X
i2S‘

ri‘ þmax
i2S‘

ri‘:

With (7), we have

’1
‘ > max

i2S‘

ri‘ � rp‘

for every flow p 2 S‘. So, all flows inS‘will remainmarked
after the unmarking operation. Therefore,’‘, as calculated
by rate_calculation_2, will be the same as ’1

‘ and the
marking of all flows is GMM-marking-consistent.

Subcase 2-B: If flow s was already marked before this
RM packet arriving at link ‘, the arrival of this RM packet
will not change the advertised rate ’‘ if the CR in this
RM packet is the same as rs‘ in the current table at the
switch. On the other hand, if the new CR is different
from the recorded CR for this flow in the table, rs‘ will be
updated with this new CR value. During rate_calcula-
tion_1 for ’1

‘ , we have

’1
‘ ¼ C‘ �

X
i2S‘

ri‘ þmax
i2S‘

ri‘:

Again, let Z‘ � M‘ denote the set of flows with
ri‘ � ’1

‘ , i 2 Z‘ and, therefore, are unmarked by the
unmarking operation after rate_calculation_1 in func-
tion table_update().

. If Z‘ ¼ ;, i.e., every flow is marked, then ’‘

calculated by rate_calculation_2 will be the same
as ’1

‘ and all flows will remain GMM-marking-
consistent.

. If Z‘ 6¼ ;, then the set of flows in Z‘ will be
unmarked since

ri‘ � ’1
‘ ; i 2 Z‘: ð8Þ

This is the only situation where ’‘ as calculated by
rate_calculation_2 may be less than ’1

‘ . In this case
(i.e., ’‘ < ’1

‘ ), we perform a third around of
unmarking and’‘ calculation (rate_calculation_3).
It is clear that the combined steps of rate_calcula-
tion_2, unmarking, and rate_calculation_3 here are
equivalent to Case 1. Thus, ’‘ calculated by rate_
calculation_3 is greater than or equal to ’‘

calculated by rate_calculation_2 and the marking
of flows is GMM-marking-consistent. tu

Proposition 1 is the foundation for the rest of the
convergence proof. The following lemma gives a lower
bound for ’‘ at link ‘ 2 L.
Lemma 1. Assume we have a set of S flows in the network at time

t ¼ 0 and the rate of each flow is controlled by the distributed

algorithm at end systems and switches. Denote �‘ as

�‘ �
X
i2S‘

1þfMRi � �‘g þ
X
i2S‘

MRi � 1þfMRi > �‘g ¼ C‘

for every ‘ 2 L. Then, there exists some time t0 such that, for

t � t0, ’‘ � �‘ for every ‘ 2 L.
Proof. Let time t0 be the time immediately after the switch

algorithm is performed for an RM packet at link ‘ and
M‘ and U‘ denote the set of marked and unmarked flows
at link ‘, respectively. By Proposition 1, the marking of
flows at link ‘ is GMM-marking-consistent. That is, every
marked flow i 2 M‘ satisfies ri‘ < ’‘.

Case 1: If some flows in S‘ are not marked, i.e.,
M‘ 6¼ S‘, then

’‘ �
X
i2U‘

1þfMRi � ’‘g þ
X
i2U‘

MRi � 1þfMRi > ’‘g

¼ C‘ �
X
i2M‘

ri‘ :

Therefore,
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C‘ ¼
X
i2M‘

ri‘ þ ’‘ �
X
i2U‘

1þfMRi � ’‘gþ
X
i2U‘

MRi � 1þfMRi > ’‘g:

On the other hand,

C‘ ¼ �‘ �
X
i2S‘

1þfMRi � �‘g þ
X
i2S‘

MRi � 1þfMRi > �‘g

by the definition of �‘. Since ri‘ < ’‘ for i 2 M‘, we must
have ’‘ � �‘ (the equality holds only when M‘ ¼ ;).

Case 2: If all flows in S‘ are marked, i.e., M‘ ¼ S‘,
there are two possible scenarios.

Subcase 2-A: Suppose maxi2S‘
ri‘ � �‘. Since ’‘ >

maxi2S‘
ri‘, we have ’‘ � �‘.

Subcase 2-B: If maxi2S‘
ri‘ < �‘, then for every flow

i 2 S‘, ri‘ < �‘. Let flow p 2 S be the flow such that
rp‘ ¼ maxi2S‘

ri‘. Then,

’‘ ¼ C‘ �
X
i2S‘

ri‘ þmax
i2S‘

ri‘ ¼ C‘ �
X

i2S‘; i6¼p

ri‘

¼ ð�‘ �
X
i2S‘

1þfMRi � �‘g þ
X
i2S‘

MRi � 1þfMRi > �‘gÞ

�
X

i2S‘; i 6¼p

ri‘ � �‘:

The last inequality holds because

�‘ �
X
i2S‘

1þfMRi � �‘g þ
X
i2S‘

MRi � 1þfMRi > �‘g � �‘jS‘j

and
P

i2S‘; i6¼p r
i
‘ � �‘ðjS‘j � 1Þ. tu

Intuitively, �‘ represents GMM-bottleneck link rate
when the network had only a single shared link ‘ (i.e., the
peer-to-peer network in Fig. 1). Lemma 1 states that, in a
general multinode network, the advertised rate ’‘ is greater
than or equal to �‘ at link ‘ 2 L.

Denote K the total number of iterations needed to
execute the centralized algorithm for GMM rate allocation
(Algorithm 2). As we have shown in the correctness proof
for Algorithm 2, K � ð2jSj � 1Þ, where jSj is the total
number of flows in the network. During each iteration of
Algorithm 2, there are three types of events as follows (also
see Algorithm 1):

1. The rate of the flow with the smallest rate reaches
the rate of the flow with the second smallest rate.

2. The rate of the flow with the smallest rate reaches
its PR.

3. Some link saturates.

In the centralized algorithm, in the worst-case, a type 1
event can take at most (jSj � 1) iterations, in which case,
each flow has a unique MR and ðjSj � 1Þ iterations will
bring the rates of all flows to the same rate of maxp2S MRp.
Note that there is no flow being removed during type 1
events and the rate allocation for each flow is temporary.
On the other hand, types 2 and 3 iterations give a
permanent rate assignment to some flow and such flow is
removed out of future iterations. In the following, we will
focus only on types 2 and 3 iterations and index such
iterations as 1; . . . ; N , where N denotes the total number of
type 2 and 3 iterations in executing Algorithm 2. We have
shown in the correctness proof of Algorithm 2 that N � jSj.

Denote �n the set of flows being removed at the end of
the nth iteration in the centralized algorithm (Algorithm 2),
where n ¼ 1; . . . ; N is the newly indexed iteration when we
consider only types 2 and 3 iterations of Algorithm 2. Flows
in �n have reached their GMM rate allocation. Let Ln,
1 � n � N , be the set of links traversed by flows in �n. Note
that �1, �2, . . . , �N are mutually exclusive and the sum of
�1, �2, . . . , �N is S while L1, L2, . . . , LN may be mutually
inclusive. That is, there could be links belonging to both Ln

and Lnþ1. This happens when some flow in �n reaches its
PR before saturating link ‘ 2 Ln at the nth iteration.

Let �n, 1 � n � N , be defined as follows:

�n ¼ max
s2�n

rs � 1þfrs > MRsg;

where rs is GMM rate allocation for flow s by Algorithm 2.
It is clear that �n, 1 � n � N , are GMM-bottleneck link rates
during the centralized algorithm. By the operation of
Algorithm 2, we have the following property for �n,
1 � n � N , �1 < �2 < . . . < �N . The following lemma states
the inequality between the advertised rate ’‘ and �1 on
every link ‘ 2 L in the network.

Lemma 2. Let t0 and �‘ be defined as in Lemma 1.

1. If �1 ¼ �‘ � PRs for s 2 �1, i.e., flows s 2 �1 reach
the GMM-bottleneck link rate before their PRs in the
centralized algorithm, then, for any t > t0, ’‘ � �1 for
every ‘ 2 L1 and ’‘ > �1 for every ‘ 2 ðL � L1Þ in
the distributed algorithm.

2. If �1 ¼ PRs < �‘ for s 2 �1, i.e., flows s 2 �1 reach
their PRs before GMM-bottleneck link rate in the
centralized algorithm, then, for any t > t0, ’‘ > �1 for
every ‘ 2 L in the distributed algorithm.

The proof of Lemma 2 is given in the Appendix. The
following lemma shows that the rate allocation for flow s 2
�1 (in the centralized algorithm) will eventually converge to
GMM rate allocation in the distributed algorithm.

Lemma 3 (Base Case). There exists a T1 � 0 such that:

1. If �1 ¼ �‘ � PRs for s 2 �1, i.e., flows s 2 �1 reach
the GMM-bottleneck link rate before their PRs in the
centralized algorithm, then, for t � T1, the following
statements hold for the distributed algorithm.

a. ’‘ ¼ �1 for every link ‘ 2 L1.
b. The ER field of every returning RM packet of flow

i 2 �1 satisfies ER ¼ maxf�1; MRg.
c. The AR at source for every flow i 2 �1 satisfies

AR ¼ maxf�1; MRg.
d. ri‘ ¼ maxf�1; MRg for every flow i 2 �1 and

every link ‘ traversed by flow i 2 �1; bi‘ ¼ 1
(marked) for every flow with ri‘ ¼ �1, i 2 �1 and
every traversing link ‘, except at its GMM-
bottleneck link ‘ 2 L1 where bi‘ ¼ 0 (unmarked).

e. The ER field of every returning RM packet of flow
j 2 ðS ��1Þ satisfies ER > �1.

f. The AR at source for every flow j 2 ðS ��1Þ
satisfies AR > �1.

g. The recorded CR of flow j 2 ðS ��1Þ satisfies
rj‘ > �1 at every link ‘ traversed by flow j.

2. If �1 ¼ PRs < �‘ for s 2 �1, i.e., flows s 2 �1 reach
their PRs before the GMM-bottleneck link rate in the
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centralized algorithm, then, for t � T1, the following
statements hold for the distributed algorithm:

a. ’‘ > �1 for every link ‘ 2 L1.
b. The ER field of every returning RM packet of flow

i 2 �1 satisfies ER ¼ PRi.
c. The AR at source for every flow i 2 �1 satisfies

AR ¼ PRi.
d. bi‘ ¼ 1 (marked), ri‘ ¼ PRi for every flow i 2 �1

and every link ‘ traversed by flow i 2 �1.
e. —g. Same as statements 1e to 1g, respectively.

Furthermore, it takes at most 2:5D for flows s 2 �1 to
converge to GMM rate allocation in the distributed algorithm,
where D denotes the maximum round-trip time among all
flows.

The proof of Lemma 3 is given in the Appendix. Note
that, under Lemma 3, once flow p 2 �1 has reached its
optimal rate ofmaxf�1; MRpg (in Case 1) or PRp (in Case 2),
its rate will never change and the marking for such flow has
the following property:

1. If rp‘ ¼ MRp (Case 1), then flow p is not marked at its
GMM-bottleneck link, but may be marked at other
links it traverses.

2. If rp‘ ¼ �1 (Case 1), then flow p is marked at all of its
traversing links but not at its GMM-bottleneck link.

3. If rp‘ ¼ PRp (Case 2), then flow p is marked at every
link it traverses. The result of Lemma 3 will now be
used as the base case for induction on the index n of
�n, 1 � n � N .

Lemma 4 (Induction). Suppose that, for some 1 � n � N � 1,
there exists a Tn � 0 such that:

1. If �j < PRs for s 2 �j, 1 � j � n, i.e., flows s 2 �j

reach the GMM-bottleneck link rate before their PRs in
the centralized algorithm and, for t � Tn, the following
statements hold for the distributed algorithm.

a. ’‘ ¼ �j for every link ‘ 2 Lj.
b. The ER field of a returning RM packet of flow

p 2 �j satisfies ER ¼ maxf�j; MRpg.
c. The AR at source for every flow p 2 �j satisfies

AR ¼ maxf�j; MRpg.
d. rp‘ ¼ maxf�j; MRpg for every flow p 2 �j and

every link ‘ traversed by flow p 2 �j; bp‘ ¼ 1
(marked) for every flow with rp‘ ¼ �j, p 2 �j and
every traversing link ‘, except at its GMM-
bottleneck link ‘ 2 Lj where b

p
‘ ¼ 0 (unmarked).

e. The ER field of every returning RM packet of flow
p 2 ðS � ð�1 [ � � � [�nÞÞ satisfies ER > �n.

f. The AR at source for every flow p 2 ðS � ð�1 [
� � � [�nÞÞ satisfies AR > �n.

g. The recorded CR of flow p 2 ðS � ð�1 [ � � � [
�nÞÞ satisfies rp‘ > �n at every link ‘ traversed by
flow p.

2. If �j ¼ PRs for s 2 �j, 1 � j � n, i.e., flows s 2 �j

reach their PRs before the GMM-bottleneck link rate in
the centralized algorithm, and for t � Tn, the following
statements hold in the distributed algorithm:

a. ’‘ > �j for every link ‘ 2 Lj.

b. The ER field of every returning RM packet of flow
p 2 �j satisfies ER ¼ PRp.

c. The AR at source for every flow p 2 �j satisfies
AR ¼ PRp.

d. bp‘ ¼ 1 (marked), rp‘ ¼ PRp for every flow p 2 �j

and every link ‘ traversed by flow p 2 �j.
e. —g. Same as statements 1e to 1g, respectively.

Then, there exists a Tnþ1 � 0 such that, for t � Tnþ1, all
statements in 1 and 2 hold for nþ 1.

The proof of Lemma 4 is given in the Appendix. It
should be clear by now that the convergence and marking/
unmarking of higher level rates of flows in the distributed
algorithm depend on the convergence and marking/
unmarking of lower level rates of flows, which is similar
to that in the centralized algorithm. The following theorem
follows from Lemmas 3 and 4 and is the main result of this
section.

Theorem 2 (Convergence Theorem). For a given number of

active flows in the network, the rate allocation for each flow by

the distributed algorithm converges to GMM rate allocation.

Corollary 1 (Time Bound for Convergence). Let K be the

total number of iterations needed to execute the centralized

algorithm for GMM rate allocation in Algorithm 2 and denote

D the maximum round-trip time among all flows. Then, an

upper bound for the convergence time to GMM rate allocation

by our distributed algorithm for a given number of active flows

in the network is 2:5KD.

This corollary follows from the proofs of Lemmas 3 and
4. It is worthwhile to point out that this upper bound for the
convergence time is a loose one. In practice, the actual
convergence time of our distributed algorithm is expected
to be much shorter because:

1. The actual RTT for most flows is smaller than D,
which is the maximum RTT among all flows.

2. Since the ER setting in our switch algorithm
(Algorithm 4) is performed on backward RM cells
(rather than forward RM cells), the effective control
loop for a flow is, therefore, between the source and
the particular switch, rather than the full source-
destination round trip used in Corollary 1.

The following flow marking property also follows from the
proofs of Lemmas 3 and 4.

Corollary 2 (Flow Marking Property). Upon the convergence
of the distributed algorithm, a flow s 2 S is marked into one of
the following states:

1. If rs ¼ MRs, then flow s is not marked at its GMM-
bottleneck link (but may be marked at other links it
traverses).

2. If rs ¼ PRs, then flow s is marked at every link it
traverses.

3. Otherwise, i.e., flow s has a rate allocation equal to some
GMM-bottleneck link rate and MRs < rs < PRs, then
flow s is marked at every link it traverses except its
GMM-bottleneck link.

It is worth pointing out that the distributed algorithm is
robust to occasional packet loss. Such robustness is mainly

due to the periodic availability of RM packets sent by the

source among the data packets.

HOU ET AL.: ON GENERALIZED MAX-MIN RATE ALLOCATION AND DISTRIBUTED CONVERGENCE ALGORITHM FOR PACKET NETWORKS 411



5 SIMULATION RESULTS

In this section, we implement our switch algorithm on our
network simulator [7] and perform simulations on various
network configurations. The network configurations that
we use include the peer-to-peer and three-node network
configurations shown in Figs. 1 and 3, respectively. In
addition, we also use a chain network (Fig. 8) and a mesh
network (Fig. 10).

All switches in the simulations are assumed to have
output port buffering with internal switching capacity
greater than or equal to the aggregate rates of their input
ports (i.e., nonblocking switches). Each output port buffer of
a switch employs the simple FIFO queuing discipline and is
shared by all flows going through that port. We set the link
capacity at 150 Mb/s. For stability, we set the target link
utilization at 0.95. That is, we set C‘ ¼ 0:95� 150 Mb=s ¼
142:5 Mb=s at every link ‘ 2 L for the ER calculation. By
setting a target link utilization strictly less than 1, we ensure
that, eventually, the potential buffer build-up during
transient period will be drained. The packet transfer delay
within a switch is assumed to be 4 �s (not including
queuing delay at an output port). The distance from an end
system (source or destination) to the switch is 1 km; the link
distance between the switches is 1,000 km (corresponding to
a wide area network). We assume that the propagation
delay is 5 �s per km. At each source, we set its initial rate
(IR) to the MR of the flow (or any small rate when MR is
zero) and NRM ¼ 32.

5.1 Peer-to-Peer Network

For this network (Fig. 1), the output port link of SW1
(Link12) is the only potential GMM-bottleneck link for all
flows. Under a normalized unit link capacity, the minimum
rate requirement, peak rate constraint, and GMM rate
allocation of each flow are listed in Table 1.

Fig. 6 shows the AR at source for flows s1, s2, and s3,
respectively. The rates shown in the figure are normalized
with respect to the capacity C‘ (142.5 Mb/s) for easy
comparison with those values obtained with our centralized
algorithm under unit link capacity in Table 1. Each flow
starts with its MR. The first RM packet for each flow returns
to the source after one round trip time (RTT) or 10 ms. After
some iterations, we see that the rate of each flow quickly
converges to its respective GMM rate allocation as listed in
Table 1.

During the course of distributed iterations, the AR of each
flow in Fig. 6 maintains GMM-feasibility, i.e., MR � AR
� PR. Also shown in Fig. 6 is that the convergence time of our

distributed algorithm is much smaller than the upper bound
given in Corollary 1. In this case, the RTT is 10ms and it takes
less than 15 ms for our distributed algorithm to converge.

5.2 Three-Node Network

For this configuration (Fig. 3), the output port links of SW1
(Link12) and SW2 (Link23) are potential GMM-bottleneck
links. Table 2 lists the MR requirement, PR constraint, and
GMM rate allocation (obtained through the centralized
algorithm) for each flow under unit link capacity. Fig. 7
shows the normalized AR of each flow under our
distributed algorithm. We find that the AR of each flow
converges to its GMM rate listed in Table 2. Here, the
maximum RTT (D) among all flows is 20 ms (s1), and it
takes our distributed algorithm less than 30 ms to converge
to GMM rate allocation, which is much smaller than the
upper bound given in Corollary 1.

5.3 Chain Network

This is one of the benchmark network configurations used
to test feedback-based flow control algorithms; it is also
referred to as a generic fairness configuration [3]. The
specific topology that we use is shown in Fig. 8, where there
are five switches interconnected in a chain with six paths
traversing these switches and sharing link capacity. Table 6
lists the MR and PR constraints for each flow, as well as
GMM rate allocation (obtained from the centralized algo-
rithm) for each flow under unit link capacity.

Fig. 9 shows the normalized AR of each flow under our
distributed algorithm. Again, the rate of each flow con-
verges to its GMM rate allocation listed in Table 6. Here, the
maximum RTT (D) among all flows is 30 ms (s1 and s2); it
takes less than 2 RTT (60 ms) for our distributed algorithm
to converge.

5.4 Mesh Network

In this last set of simulations, we implement our distributed

algorithms on a more complex mesh network topology, as
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shown in Fig. 10. In this case, we have a total of 12 flows

traversing 12 paths that interact with each other along the

various links. Table 7 lists flow paths, MR and PR

constraints for each flow, and GMM rate allocation

(obtained from the centralized algorithm) for each flow

under unit link capacity.

Fig. 11 shows the normalized AR of each flow under our

distributed algorithm. Again, the rate of each flow con-

verges to its GMM rate allocation listed in Table 6. In this

case, the maximum RTT (D) among all flows is 40 ms (s11

and s12) and it takes less than 60 ms (< 2RTT) for our

distributed algorithm to converge.

6 CONCLUSIONS

This paper investigated the fundamental problem of
bandwidth allocation among flows in a packet network.
We examined the classical max-min rate allocation and
presented theory to generalize it with minimum rate and
peak rate constraints. We designed a feedback-based
distributed algorithm that achieves GMM rate allocation
through asynchronous iterations. Our design offered a new
perspective on flow marking technique and advanced the
state-of-the-art flow marking scheme proposed by other
researchers. We provided a proof of our distributed
algorithm’s convergence and used simulation results to
demonstrate its fast convergence property.

APPENDIX 1

Proof of Theorem 1. To show the “only if” part, we suppose
that the GMM-feasible rate vector r ¼ frs j s 2 Sg is

GMM and assume that, on the contrary, there exists
some flow s 2 S which has neither a GMM-bottleneck
link with respect to r nor a rate assignment equal to its
PR. Then, for every nonsaturated link ‘ (F‘ < C‘)
traversed by s, we can increase rs by an increment until
it reaches the PR of s or some link saturates, whichever is
smaller. For every saturated link ‘ (F‘ ¼ C‘) traversed by
s, if T ¼ ft j rt > MRt, t traversing ‘g is nonempty, there
must exist a flow p 2 T , p 6¼ s, such that rp > rs. Thus, the
quantity

�‘ ¼
minfðC‘ � F‘Þ; ðPRs � rsÞg if F‘ < C‘;
minfðrp � rsÞ; ðrp �MRpÞ; ðPRs � rsÞg if F‘ ¼ C‘

�

is positive. Now, let � be the minimum of �‘ over all links

‘ traversed by s. Therefore, we can increase rs by � while

decreasing the same amount of rate from flow rp on the

links ‘ traversed by s with F‘ ¼ C‘. We maintain GMM-

feasibility without decreasing the rate of any flow t with

rt � rs. This contradicts the GMM definition of the rate

vector r.
For the proof of the “if” part of Theorem 1, we assume

that each flow has either a GMM-bottleneck link with
respect to the GMM-feasible rate vector r or a rate
assignment equal to its PR.

. Case 1: To increase the rate of any flow s with
rs < PRs while maintaining GMM-feasibility, we
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MR Requirement, PR Constraint, and GMM Rate Allocation of

Each Flow for the Chain Network Configuration

Fig. 9. The rates of all flows for the chain network configuration.

Fig. 10. A mesh network topology.

TABLE 7
Flow Route, MR Requirement, PR Constraint, and GMM Rate

Allocation of Each Flow for the Mesh Network Topology



must decrease the rate of some flow p with rp >
MRp and p traverses the GMM-bottleneck link ‘ of
s (flow s must go through a GMM-bottleneck link
since rs < PRs and we have F‘ ¼ C‘ by the
definition of a GMM-bottleneck link). Since rs �
rp for all p in T ¼ ft j rt > MRt, t traversing ‘g by
the definition of GMM-bottleneck link, the rate
assignment for any flow s 2 S with rs < PRs

satisfies the definition for GMM.
. Case 2: For any flow s with rs ¼ PRs, we cannot

further increase the rate of rs while maintaining
GMM-feasibility. That is, we cannot generate
another GMM-feasible rate vector r̂r ¼ fr̂rs j s 2 Sg
with r̂rs > rs. Thus, the rate assignment for any
flow s with rs ¼ PRs satisfies the requirement for
GMM rate allocation.

Combining Cases 1 and 2, we have proven the “if” part

of the theorem. The proof for Theorem 1 is now

complete. tu

APPENDIX 2

Proof of Lemma 2. Case 1: First, consider link ‘ 2 L1. Since

�‘ ¼ �1 for ‘ 2 L1 and, by Lemma 1, ’‘ � �‘ for every

‘ 2 L, we have ’‘ � �1 for every ‘ 2 L1. For link

‘ 2 ðL � L1Þ, since �‘ > �1 for ‘ 2 ðL � L1Þ, we have ’‘ >

�1 for every ‘ 2 ðL � L1Þ.
Case 2: Since �‘ > �1 and, by Lemma 1, ’‘ � �‘ for

every ‘ 2 L, we have ’‘ > �1 for every ‘ 2 L. tu

APPENDIX 3

Proof of Lemma 3. 1) In this case, by Case 1 of Lemma 2,

there exists a t1 � 0 such that, for t � t1,

’‘ � �1 for every ‘ 2 L1; ð9Þ
’‘ > �1 for every ‘ 2 ðL � L1Þ: ð10Þ

We will show that there exists a time t2 such that, for

t � t2, the following statements are true:

The ER field of every returning RM packet of

flow i 2 �1 satisfies ER � �1; ð11Þ
The recorded CR of flow i 2 �1 satisfies r

i
‘ � �1

at every link ‘ traversed by flow i 2 �1: ð12Þ

To see that (11) and (12) hold, consider that the first RM

packet of flow i 2 �1 leaves the source after time t1.

When this RM packet returns to the source at some time

tRTT1 � t1, the ER field is set to7

ER :¼ max min PRi; min
‘ traversed by i

’‘

� �
; MRi

� �
: ð13Þ

Since 1) PRi � �1 for i 2 �1 and 2) ’‘ � �1 for every

‘ 2 L1, we have that, for t � tRTT1 ,

ER � maxf�1; MRig � �1 for i 2 �1:

Note that any feedback RM packet arriving at the source

after time tRTT1 corresponds to a forward RM packet

which left the source after time t1. Applying the above

arguments to any such returning RM packet of flow i 2
�1 and note that (9) holds for t � t1, we have that (11) is

true for t � tRTT1 .

At time tRTT1 , the AR at the source is set to ER and
ARðtRTT1 Þ � �1. Since (11) holds for t � tRTT1 , we have
that the AR at source for flow i 2 �1 satisfies ARðtÞ � �1

for t � tRTT1 .

Let t1:5RTT1 denote the time when an RM packet arrives

at its destination after it leaves the source after time tRTT1 .

The recorded rate of flow i 2 �1 at any link on its way is

set after t1:5RTT1 . We have shown that every RM packet of

flow i 2 �1 leaving the source has its CR rate set to AR,

which is greater than or equal to �1 for any time t � tRTT1 .

Hence, the recorded rate ri‘ satisfies (12) for t � t1:5RTT1 .

Let t2 ¼ t1:5RTT1 and we have proved (11) and (12).
To prove statement 1a of Lemma 3, consider any link

‘ 2 L1. Note that, in this case, only flows from �1

traverse links of L1. Let M‘ and U‘ be the set of marked
and unmarked flows, respectively. Then,

. Case 1: Suppose that not all flows are marked,
then

’‘ �
X
i2U‘

1þfMRi � ’‘g þ
X
i2U‘

MRi � 1þfMRi > ’‘g

¼ C‘ �
X
i2M‘

ri‘

or
X
i2M‘

ri‘ þ ’‘ �
X
i2U‘

1þfMRi � ’‘g

þ
X
i2U‘

MRi � 1þfMRi > ’‘g ¼ C‘:

But,

�1 �
X
i2S‘

1þfMRi � �1g þ
X
i2S‘

MRi � 1þfMRi > �1g

¼ C‘

for ‘ 2 L1, and ri‘ � �1 for i 2 M‘ by (12). There-

fore, ’‘ � �1 for t � t1:5RTT1 .
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7. Note that the RTT term is used as a generic term for round trip time to
discuss what kind of outcome will happen after an RM packet completes
one round trip time. It is not used as a precise measure for time.

Fig. 11. The rates of all flows for the mesh network topology.



By (9), ’‘ � �1 for every link ‘ 2 L1 for t � t1,

we have ’‘ ¼ �1 for t � t1:5RTT
1 .8

. Case 2: We now assume that all flows are marked.
We will show that this will lead to contradiction
and, thus, only Case 1 is possible. Let flow p 2 S‘

be the flow such that rp‘ ¼ maxi2S‘
ri‘. Then,

’‘ ¼ C‘ �
X
i2S‘

ri‘ þmax
i2S‘

ri‘

¼ �1 �
X
i2S‘

1þfMRi � �1gþ
X
i2S‘

MRi � 1þfMRi > �1g

�
X
i2S‘

ri‘ þmax
i2S‘

ri‘

� max
i2S‘

ri‘:

ð14Þ

The last inequality follows from (12) for t �
t1:5RTT
1 and Fact 1, ri‘ � MRi, i 2 S‘. On the other

hand, since all flows are marked, ’‘ > maxi2S‘
ri‘.

This contradicts (14). Therefore, flows in �1

cannot be all marked on link ‘ 2 L1.

Combining Cases 1 and 2 above, statement 1a of

Lemma 3 hold for t � t1:5RTT
1 .

Note that flow i 2 �1 traverses at least one link ‘ 2 L1.
By (13) and statement 1a of this lemma, any RM packet
that arrives at its destination after t1:5RTT

1 returns to the
source with the ER field set to maxf�1; MRg, i 2 �1.
Denote the time of the return of this feedback RM packet
to the source by t2RTT

1 . This shows that statement 1b of
the lemma is true for t � t2RTT

1 . It then follows that, for
t � t2RTT1 , the AR at the source is set to maxf�1; MRg,
i 2 �1, which is statement 1c of the lemma.

Let t2:5RTT
1 be the time of an RM packet arriving at its

destination after leaving the source after t2RTT
1 . Then,

with the operation of the algorithm, every flow i 2 �1

with ri‘ ¼ �1 will be marked with bi‘ ¼ 1 at every link it
traverses, except at its GMM-bottleneck link ‘ 2 L1, and
will remain marked ever after as long as the set of flows
remain unchanged for t � t2:5RTT

1 . Thus, statement 1d of
Lemma 3 also holds.

So far, we have proven that statements 1a to 1d of
Lemma 3 hold for t � t2:5RTT

1 .
To see that statement 1e of Lemma 3 is true, consider

that the first RM packet of flow j 2 ðS ��1Þ leaves the
source after time t1. When this RM packet returns to the
source at some time tRTT

1 � t1, the ER field is set to

ER :¼ max min PRj; min
‘ traversed by j

’‘

� �
; MRj

� �
:

Since PRj > �1 for j 2 ðS ��1Þ and ’‘ > �1 for every

‘ 2 ðL � L1Þ, we have that, for t � tRTT
1 ,

ER > �1 for j 2 ðS ��1Þ:

Now, using similar arguments as above for the proofs of

(11) and (12) and taking (10) into account, it can be

shown that statements 1e to 1g hold for t � t1:5RTT
1 .

Denote T1 ¼ t2:5RTT1 . Then, all statements in case 1 of
Lemma 3 are proved.

2) The proof of this case is simpler than Case 1 and
also follows similar steps. We omit presenting it here to
conserve space.

Finally, let D denote the maximum round-trip time
among all flows. Then, we have just shown that it takes
at most 2:5D for flows s 2 �1 to converge to GMM rate
allocation in the distributed algorithm. tu

APPENDIX 4

Proof of Lemma 4. By the induction hypothesis, for t � Tn,

1) every flow p 2 �j, 1 � j � n has reached its GMM rate

allocation (maxf�j; MRpg) in case 1 or PRp in case 2, and

these rates do not change as long as the set of flows in the

network remain unchanged; and 2) every flow p 2 �j,

1 � j � n is in the following marking state:

. If rp‘ ¼ MRp, then flow p is not marked at its
GMM-bottleneck link and may be marked at
other links it traverses.

. If rp‘ ¼ PRp, then flow p is marked at every link it
traverses.

. If rp‘ ¼ �j, then flow p is marked at all of its
traversing links except its GMM-bottleneck link.

Since, by the induction hypothesis, every flow in ð�1 [
� � � [�nÞhas stabilized at itsGMMrate allocationwith one
of the aforementioned marking states on the traversing
links along its path for t � Tn, we can therefore consider a
reduced network with links L̂L ¼ Lnþ1 [ Lnþ2 [ � � � [ LN ,

9

flows ŜS ¼ S � ð�1 [ � � � [�nÞ ¼ �nþ1 [ � � � [�N , and link
capacities ĈC‘ ¼ C‘ �

P
flow p2ð�1[���[�nÞ traversing link ‘ r

p
‘ , ‘ 2 L̂L.

Denote n̂n‘ the number of flows traversing link ‘ in the
reduced network ðL̂L; ŜS; ĈCÞ. For the reduced network
ðL̂L; ŜS; ĈCÞ, let

�̂�‘ �
X
i2ŜS‘

1þfMRi � �̂�‘g þ
X
i2ŜS‘

MRi � fMRi > �̂�‘g ¼ ĈC‘

and reapply the arguments used in the proof of Lemma 1,

we have ’‘ � �̂�‘ for every ‘ 2 L̂L. Using similar argu-

ments as for the proof of Lemma 2, it is straightforward

to show that statements similar to Lemma 2 hold for the

reduced network. That is,

1. If �nþ1 ¼ �̂�‘ � PRs for s 2 �nþ1, i.e., the GMM-
bottleneck link rate is reached before some flow
s 2 �nþ1 reaches its PR in the centralized algo-
rithm, then, for the distributed algorithm, we
have

’‘ � �nþ1 for every ‘ 2 Lnþ1;

’‘ > �nþ1 for every ‘ 2 ðL̂L � Lnþ1Þ:

2. If �nþ1 ¼ PRs < �̂�‘ for s 2 �nþ1, i.e., some flow
s 2 �nþ1 reaches its PR before the GMM-bottle-
neck link rate is reached in the centralized
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8. This shows that M‘ must be an empty set on ‘ 2 L1. That is, none of
the flows i 2 �1 is marked on link ‘ 2 L1.

9. Note that L̂L ¼ Lnþ1 [ Lnþ2 [ � � � [ LN may not be the same as L �
ðL1 [ L2 [ � � � [ LnÞ since links in Ln may be part of Lnþ1.



algorithm, then, for the distributed algorithm, we
have

’‘ > �nþ1 for every ‘ 2 L̂L:

Now, using the same token as in the proof of

Lemma 3 for the reduced network, we can show

that all the statements of Lemma 4 hold for

nþ 1. tu
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