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Abstract—In this work, we address the problem of scalable
video delivery to mobile users under varying buffering con-
straints on the user side to determine how channel variations
affect the optimal delivery policy. Typically, buffering constraints
dictate how much video data the consumer may cache on a local
disk ahead of the playback instant, and have a marked impact on
the optimal policy for retrieving content. Using a semi-Markov
decision process (SMDP) we determine optimal video delivery
policies for different levels of buffer limits in different wireless
environments for a single user scenario. The outcome of the
SMDP shows how the optimal download policy depends on the
buffer constraints and the temporal correlation of the wireless
channel. We apply a decision tree classifier to the output of the
SMDP to derive simple approximate policies for different sce-
narios. The results indicate that the occupancy of the download
buffer is in general more important in the decision making than
the current state of the wireless channel. Furthermore, we show
that the optimal policy is more conservative in slowly varying,
and more greedy in fast changing channels.

I. INTRODUCTION

A great deal of research energy has been focused on the
challenge of delivering high-quality video content to mobile
users, most of which exploits the idea of adaptive video.
In adaptive video, the video is divided into segments, and
multiple versions of each segment are created (encoded at
different bit rates). When the next segment is to be downloaded
for viewing (i.e., at a decision epoch), a decision is made
(often based on conditions in the network or on the user’s
device) regarding which version of the segment to retrieve. The
sequence of decisions form a policy, which can be designed to
optimize any of a variety of metrics including video quality,
network capacity, energy consumption, or fairness.

Some video delivery systems use scalable video coding
(SVC), an extension of the H.264 video coding standard. In
SVC, rather than encoding each segment into multiple bit
rates, the video segments are encoded into layers. The base
layer may be decoded into a low-quality video, and successive
enhancement layers add incremental improvements in quality.
This offers a flexibility advantage over non-scalable adaptive
video systems, in which once a quality decision is made for
a particular segment, there is no possibility of incrementally
increasing its quality by retrieving more data later. In an
adaptive scalable video scenario, the policy describes how

many layers to download for each video segment, and in what
sequence they should be downloaded.

Within the context we have just described, there exists a
substantial body of work on policies for delivery of video
content to mobile users under various network, computing,
and energy constraints. However, this body of work fails
to consider the effect of channel variations on the optimal
policy. It is argued in [?] that the temporal correlation of
the channel capacity significantly impacts the delivered video
quality. The unanswered question is if the optimal download
policy for SVC video would change in different environments
with different capacity variation characteristics.

Another important aspect in on demand video delivery is
how much buffering is allowed on the end user device. A
large buffer gives the content providers fine-grained control
over who may watch a video at any moment in time, as well
as the ability to inject personalized advertisements into a video
stream on-the- fly. It also results in a higher spectral efficiency
for the video transmission. However, if users stop watching the
video before it ends, the resources used for buffering the video
will be wasted. Furthermore, a small buffer limit results in an
inferior user experience for mobile users because the video
quality is affected by fluctuations in wireless signal quality,
network load, and other conditions in the access network.
Hence, based on the conditions and type of the video to be
transmitted, content providers might choose varying amounts
of buffer limits.

The goal of this work, therefore, is to determine the effect of
different channel characteristics on the optimal video delivery
policy for scalable video content under different buffering
constraints. We use a semi-Markov decision process (SMDP)
to find a policy that optimizes video quality for scalable video
delivery under different access constraints, which in turn are
defined as the amount of video being downloaded ahead of
the playback time. We apply a decision tree classifier to the
output generated by the SMDP to find simple approximately
optimal policies.

The rest of this paper is organized as follows. In Section ??,
we briefly review related research. Next, in section ??, we
describe the methodology used to solve the SMDP. Further-
more, a brief introduction is given about decision tree analysis.
Section ?? contains the main findings of the paper including



the decision tree analysis. In Section ??, we quantify the
accuracy of the approximate policies, and study the state space
size of the studied SMDPs. Finally, Section ?? concludes the
paper.

II. RELATED WORK

There has been considerable recent interest within the
research community on delivery policies for adaptive video.

Many have used dynamic programming techniques, includ-
ing Markov decision process (MDP) models, to optimize rate
selection and video scheduling policies. A similar formula-
tion to ours is described in [?], where an MDP was used
to find a policy for delivery of scalable video content in
an i.i.d on/off channel. The result was a “diagonal” policy
that combines prefetching lower layers with backfilling upper
layers. Others have considered more sophisticated scenarios
and enhancements to the basic MDP formulation. For example,
[?] develops an MDP to improve both video quality and
playback smoothness, and [?] compares a myopic policy (that
discounts the reward for video segments in the far future) and
a foresighted policy.

A major issue in MDP-based techniques is that the system
dynamics must be known a priori in order to solve the
optimization problems, a condition that is often impractical
for wireless video delivery. For this reason, we codify a
set of rules for designing video delivery policies in new
wireless environments (Section ??); others have developed
online learning techniques for dealing with new environments.
A reinforcement learning method that learns the channel dy-
namics online is described in [?], and the method is shown to
asymptotically converge to the optimal video delivery policy.
Another online method, which results in a nearly optimal
delivery policy for scalable video, is proposed in [?]. In [?],
several techniques are proposed to reduce the computational
overhead of the MDP for adaptive video delivery, including
both online and offline approaches. A scheduling algorithm
based on insights from an MDP solution, but requiring only
partial knowledge of channel, dynamics is described in [?].

All of these works, however, consider unlimited buffering at
the receiver. Furthermore, the optimization is performed in a
very specific wireless environment. In this work, we consider
for the first time the effect of content provider-enforced buffer
restrictions on the receiver and examine the optimal download
policies in different wireless environments.

III. METHODOLOGY

In this section, we will first give a detailed explanation of
the modeling of the access constraints under study and the
wireless environments in which the analysis is performed. The
formulation of the SMDP is described next, followed by a
brief introduction to the decision tree classifier method, which
is used for deriving approximations of the SMDP policy.

A. Buffer Restriction Model

An adaptive scalable video player typically works as fol-
lows. The application has a buffer in memory or on hard disk,

into which blocks of video identified by a combination of a
segment index and a layer index are downloaded in preparation
for playback. Typically the video player will begin decoding
blocks for the segment with index i + 1 as it begins playing
segment i, so that segment i+ 1 will be decoded in time for
playback, and will only download blocks with segment index
i+2 or higher. We therefore consider the blocks for segments
i and i + 1 to be stored in a playout buffer distinct from
the download buffer. This scenario is illustrated in Figure ??,
where the blocks to the left of the solid vertical line are in the
playout buffer and the blocks to the right of the line are in the
the download buffer. At each decision epoch, the player can
choose between blocks from different layers to be retrieved
into the download buffer. These blocks are called download
candidates for that decision epoch. To keep the state space
manageable, we only allow up to one download candidate per
layer. That is, if the highest segment index for a block of layer
l in the download buffer is i, it may download the layer l block
for segment i+ 1 but not the block for segment i+ 2.

In practice, many video streaming services impose a buffer
limit that limits how far ahead of playback a video may be
retrieved. In this case, the number of download candidates
may be constrained. Figure ?? shows an example in which the
lower layer has already been downloaded into the first segment
in the download buffer. For a client with a large buffer limit,
we can identify two download candidates for the next decision
instant. For a client with a buffer limit of one segment, only
videos for the first segment in the buffer may be retrieved,
leaving only one download candidate.

B. Wireless environment

The wireless link over which our scalable video service
operates is modeled as a Markov chain with four states, with
data rates of {0.5, 1, 2, 4} Mbps respectively. We include in
our study five models for the channel dynamics (i.e., the
probability of transition from one state to the next):

• The i.i.d channel has an equal probability of moving to
any state next, regardless of the current state, and models
a fast varying channel

• The low correlation channel has a slightly higher prob-
ability of remaining in the same state or reaching a
neighboring state. The variations are relatively fast in this
channel.

• The high correlation channel has a much higher prob-
ability of remaining in the same state or reaching a
neighboring state, which results in a channel with slow
variations.

• The empirical urban channel has transition probabilities
based on measurements of wireless signals in Brooklyn,
NY [?], [?],

• The empirical suburban channel has transition prob-
abilities based on measurements of wireless signals in
Amherst, MA [?], [?].

These channel models are illustrated in Figure ??.



C. SMDP Formulation

The video is divided into segments, each having a playback
duration of one second. Each segment is encoded into one base
layer and one enhancement layer of equal size. The SMDP
formulation consists of a set of states, defining the state of
the ongoing download process in any time instant. From each
state, a set of actions is available which can be taken to move
from one state to the next. The form of the actions and states
is as follows.

The action is indicated by the layer number of the next
download. The set of available actions in each state depends
on the buffering constraint as shown in Figure (??)

Each state of the process is represented by the content of
the download buffer, the content of the playout buffer, the
time elapsed from the playback start of the current segment,
and the instantaneous channel quality. The download buffer
is represented by a vector whose entries indicate how many
future segments have been retrieved for each of the layers.
The playout buffer has a length equal to three segments and
is represented by a vector indicating the number of layers of
video in each of these three buffer position.

Time is assumed to be slotted and the duration of a time
slot is equal to the fastest action being performed, which
is downloading a segment in the best state of the channel.
All other actions take approximately integer multiples of a
timeslot.

The perceived video quality is modeled as a sublinear
function of the video rate described in [?]. At each state, a
reward rs,a is assigned for every possible action as follows:

rs,a =

ts,a∑
t=1

e−α(
Rt

Rmax
)
−β

+α, (1)

where ts,a is the duration of action a taken in state s, t
represents a discretized interval of time spent in the state (up
to ts,a), Rt is the rate of the video being played back at instant
t and Rmax is the maximum video rate. The constants α and
β are video specific and are set to 0.16 and 0.66, respectively,
as suggested in [?]. suggested in To solve the SMDP, we apply
the value iteration method [?].

The outcome of the SMDP is the mapping from each state to
the respective optimal action in that particular state. However,
there are states from which the same value is obtained for base
and enhancement layer download. In other words, it does not
matter which action is taken. We refer to these actions as
indifferent actions. Hence, there are three possible actions in
each state in total.

D. Derivation of approximate policies

The SMDP policy we computed, is essentially a classifier,
which takes as its input a 5-dimensional state, and classifies
it into one of three action groups (“classes”). To gain insight
into the output of the SMDP policy, we use a decision tree
classifier [?] to develop a simplified set of rules for selecting
the next block to retrieve.

We use the party [?] package in R to construct our
decision tree. The tree is trained on a set of data points (in this
case, the states from the SMDP) and the action as determined
by the SMDP. It distills this complex multidimensional dataset
into a set of rules that represents the SMDP as accurately as
possible.

Each node of the tree partitions the input dataset by splitting
it on one of the state parameters (or some transformation of
them). A sample tree is illustrated in Figure ??. We allow the
tree to split on any of the following parameters: the channel
state (c), the duration of the unplayed video in the playback
buffer (p), the number of blocks in the download buffer for
each of three layers (n0, n1, n2), and the difference in the
number of blocks in the download buffer between any two
consecutive layers (d0,1, d1,2). The party library recursively
tries different split parameters and different split values to find
a good split (one that effectively reduces the entropy of the
output). We limit the depth of the tree to 3 so that the rule-
based policy is not overly complex.

The result of the decision tree not only gives us a simple
policy that approximates the SMDP policy, but also gives
us some measure of the relative importance of different
state parameters in determining the best action. For example,
parameters that appear near the root of the tree affect more
cases, and can be considered more important than those that
appear at the bottom of the tree. Similarly, split conditions that
appear often in the tree regardless of channel dynamics can be
considered more “universal” than those that only appear under
certain conditions.

IV. DISCUSSION

For each of the presented channel models, a SMDP is set
up for different buffer limit values ranging from 5s to 100s
with a discount factor of 0.95. The decision tree algorithm
with a tree depth of 3 is then applied to the outcomes of each
scenario.

The results of the decision tree indicate that the generic rule
that governs over all scenarios is that the frontier of the base
layer buffer never falls behind that of the enhancement layer
buffer. In other words, the diagonal policy introduced in [?]
is also observed here. The slope of this diagonal, which is the
difference between the number of base and enhancement layer
segments in the buffer, is a function of both the buffer limit
and the pace of the channel variations as will be described
next.

The tree outputs indicate that in all scenarios, the tree
root, which carries the most important attribute for decision
making, is the difference between the number of base and
enhancement layer segments in the download buffer. Figure ??
compares the information gain of the layer difference with that
of the instantaneous channel state. The information gain of an
attribute is defined as the average reduction in the entropy of
the dataset, if it was split by that attribute (Reference maybe?).
The higher the information gain, the more impact that attribute
has on the overall policy. It can be seen that for all cases, the
layer difference is a more determining factor than the channel



state. It is also worth noting that the significance of the channel
state decreases with buffer limit.

For each scenario, there is a threshold for the layer differ-
ence, below which the algorithm tends to request base layer
segments and above which it tends to request enhancement
layer segments. In figure ??, this threshold is depicted for
different channels with respect to the buffer limit. A higher
threshold indicates a more conservative download policy be-
cause it means that the receiver prefers a safer base layer
margin to reduce the danger of starving the buffer. On the
other hand, a lower threshold represents a greedy behaviour
in which the receiver starts downloading enhancement layers
at an earlier stage to improve quality.

As it can be seen, fast varying channels have more greedy
download policies than slow varying channels. The reason for
this is that in a slow varying channel, a deep fade state is hard
to recover from due to the high temporal correlation of the
channel quality. In other words, if the capacity drops low, it
will stay low for a significant amount of time. Consequently,
the optimal strategy in these environments is to have a large
base layer margin in order to prevent buffer starvation.

However, there are exceptions to this thresholding policy at
which the optimal strategy is to take the indifferent action.
A user would choose to act indifferently, if at one hand
there is enough base layer segments in the buffer to avoid
potential buffer starvation, and on the other hand, there are
enough enhancement layer segments to avoid a loss in video
quality. The indifferent choice of action can be considered as
a loose policy, which is taken in safe conditions. Opposingly,
the strict actions of choosing a specific layer to download is
an indicator of either avoiding buffer starvation or improving
quality. Figure ?? shows the cases in which the indifferent
action is optimal for different channel variations at three buffer
limits of 20, 60 and 100 seconds.

It should be noted that in Figure ?? and ??, the actual values
of the thresholds are also a function of the discount factor.
However, it is observed that in all investigated scenarios, the
relative differences in the policies for different environments
follows the same pattern.

According to this plot, once the number of both base and
enhancement layer segments in the download buffer exceeds
a certain threshold, the optimal action becomes indifferent of
the layer index. As it can be observed also in this figure, the
threshold is higher for channels with slower variations. Similar
to the previous case, it can be argued that the conservative
strict policy of dowloading a specific layer is favored in slowly
varying channels for a longer period. On the other hand, in fast
varying channel, the loose indifferent policy kicks in sooner.

The above analysis holds true for buffer limits beyond 20
seconds. In these scenarios, the instantaneous channel state is
a very insignificant attribute in the decision policy. Precisely,
for these buffer limit, the channel state never even appears in

a tree of depth 3. However, this changes in small buffer limit
scenarios. It turns out that if the buffer limit is small, although
the generic rule of prefetching and backfilling still holds, the
instantaneous channel state becomes a determining factor in
the decision making.

Furthermore, as shown in Figure ??, the effect of instanta-
neous channel state is more visible in slow varying environ-
ments. A similar explanation to the large buffer scenario can
be used here as well. The slower the variations, the longer
the channel remains in a particular state. If also the amount
of buffered data is very limited, the danger of emptying the
buffer in a long lasting bad channel is high. Therefore, in these
environments, the policy is very conservative in bad states and
turns greedy in good states. On the other hand, if the channel
capacity varies fast, the uncertainty about the future channel
state is high, which makes the current state of the channel
non-suitable for decision making.

V. REMARKS

The presented results in this paper are based on a decision
tree of depth three. Decision trees with higher depth have
a higher accuracy but they are also more complicated to
evaluate. Figure ?? shows the accuracy of the decision trees in
each scenario. The accuracy is calculated based on the relative
number of correctly classified versus the total number of states
in each case. According to this figure, the accuracy will never
be less than 85%, which we argue to be acceptable to derive
the approximate policies.

Figure ?? shows the number of states generated by the
SMDP which is the same for all channel types being used.
Large state spaces are a limitation to the settings of the SMDP
and can increase drastically with the buffer limit, number
of enhancement layers and the set of available data rates.
The higher the number of states, the more complex and time
consuming the value iteration and classification.

VI. CONCLUSION

In this paper, the effect of wireless channel characteristics on
optimal SVC download policies is investigated under varying
buffer constraints using the decision tree method. The results
indicate that the general policy is to prefetch base layers ahead
and backfill enhancement layers afterwards. Furthermore, the
margin of base and enhancement layer difference is larger for
slow varying channels, which implies a more conservative
policy in these cases. The instantaneous channel is only
significant in small buffer scenarios and mostly affects the
slowly varying environments.

In this work, only the single user scenario is considered and
the more general case of a multiuser scenario in a networking
environment where users are competing for resources, is left
for future work.


