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Abstract 

This paper describes a methodology for designing in- 
terconnected LAN-MAN networks with the objective 
of minimizing the average network delay. We con- 
sider IEEE 802.3-5 LANs interconnected by trans- 
parent bridges. These bridges are required to form a 
spanning tree topology. The optimization algorithm 
for finding a minimum delay spanning tree topology 
is based on simulated annealing. In order to measure 
the quality of the solutions, we find a lower bound 
for the average network delay. The comparison of our 
results with this lower bound and several other good- 
ness measures show that the solutions are not very far 
from the global minimum. We extend our algorithm 
for finding minimum delay LAN-MAN topologies con- 
sisting of FDDI MANS or Switched Multi-Megabit 
Data Service (SMDS) interconnecting several clusters 
of bridged LANs. 

1 Introduction 

This paper describes a heuristic algorithm for design- 
ing interconnected LAN-MAN networks with the ob- 
jective of minimizing the average network delay. We 
consider IEEE 802.3-5 LANs interconnected by trans- 
parent bridges described in IEEE Standard 802.1 Part 
D [l]. These bridges are widely used for interconnect- 
ing CSMA/CD LANs and they can also be used for 
other types of LANs. The need for covering a large 
area and many nodes on LANs is fulfilled by these 
bridges (21. No participation by an end station is 
necessary for making use of the services provided by 
transparent bridges. These bridges are self-learning 
and self-configuring. They learn the location of end 

*This work was supported by the New York State Science 
and Technology Foundation's Center for Advanced Technology 
in Telecommunicatons, Polytechnic University, Brooklyn, New 
York and by the NSF under grant NCR-8909719 

stations by observing source addresses. They route 
frames by comparing the destination addresses to the 
table of learned addresses. Given any arbitrary topol- 
ogy, bridges configure themselves to  be part of a de- 
terministic active spanning tree topology [3]. They 
adapt to changes in the topology, such as failures, 
and the movement of stations without network man- 
agement intervention. 

The performance of bridged CSMA/CD LANs has 
been studied in [4,5,6,7,8]. The problem of determin- 
ing which gateways to use to interconnect existing 
data networks has been discussed in [9,10]. Simu- 
lated annealing technique has been used for design- 
ing minimum cost interconnected CSMA/CD LANs 
in [ll]. The design of optimally locating bridges and 
repeaters for minimizing the average delay and fast 
algorithms for special cases have been studied in [12]. 

We address the problem of designing minimum de- 
lay spanning tree topologies for interconnecting LANs 
given the traffic requirements. This problem is a dif- 
ficult combinatorial optimization problem because of 
many local minima. The optimization method for 
finding the minimum delay spanning tree topology 
is based on simulated annealing, since this method 
works well on problems with many local minima [13]. 
Although simulated annealing heuristics can find the 
global optimum, this may require infinite number of 
transitions [13,14]. Finite-time implementations of 
the algorithm approximate an optimal solution. In 
order to measure the quality of our solutions, we find 
a lower bound for the average network delay cor- 
responding to the given set of traffic requirements. 
We compare the results of the optimization algorithm 
with this lower bound. We use other goodness mea- 
sures for showing the quality of the solutions. 

We also consider the LAN-MAN interconnection 
problem. FDDI LANs are already used as backbone 
MANS for the interconnection of clusters of bridged 
LANs. The IEEE 802.6 DQDB (Distributed Queue 
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Dual Bus) MAN is a different alternative backbone 
network. Another possibility for the interconnec- 
tion of bridged LAN clusters is the Switched Multi- 
Megabit Data Service (SMDS) which is to be offered 
by the Local Exchange Carriers in the early 1990s [15]. 
We describe an extended version of the algorithm b r  
finding minimum delay LAN-MAN topologies. 

The remainder of this paper is organized in the fol- 
lowing way: In Section 2, we describe the problem and 
our assumptions. Section 3 covers the design of inter- 
connected LAN networks. We describe the heuristic 
algorithm based on simulated annealing and the cal- 
culation of the network delay in Sections 3.1 and 3.2. 
We find a lower bound for the average network delay 
corresponding to a given set of traffic requirements in 
Section 3.3. In Section 4, we extend our methodology 
to LAN-MAN networks. Results and several good- 
ness measures are given in Section 5. Section 6 is the 
conclusion. 

Figure 1: An example of a bridged LAN network. 

2 Definition and Formulation 
of the Problem 

An example physical topology for a group of bridged 
LANs is shown in Fig. 1. In order to avoid looping of 
packets, transparent bridges require the active topol- 
ogy to be a spanning tree. One of the possible active 
spanning trees is shown with bold lines. During the 
normal operation, only the bridges on the active tree 
forward packets. Other bridges remain idle unless ac- 
tivated to form a new tree in the case of failures. In 
our problem, we are given N LANs and the traffic re- 
quirements between all LAN pairs. Our goal is finding 
the spanning tree topology with minimum average de- 
lay for this set of requirements. We do not have any 

constraint on where to place the bridges. In other 
words, we want to find where to place N - 1 bridges 
among all possible LAN pairs such that they form a 
spanning tree with minimum delay. After finding the 
minimum delay tree, bridges can be set-up to choose 
this tree as the active topology by adjusting the pa- 
rameters of the self-configuration algorithm [3]. 

In Fig. 1, LANs are represented as nodes and 
bridges are represented as branches of a graph. Since 
we are more interested in the shape of the minimum 
delay topology, we assume that all bridges have two 
ports. Many of the existing bridges are two-port 
bridges, but we can also model a multi-port bridge 
as several branches and a central node. In that case, 
branches in the graph will correspond to bridge ports 
rather than whole bridges. In that way, both two-port 
and multi-port bridges can be used for implementing 
minimum delay spanning tree topologies. 

The problem of finding the minimum delay span- 
ning tree topology is formulated as described below: 

N 
min T = x D e l a y ( L A N  i )  + 

i=l { + i  j} E X 

N N  
Delay(Bridge btw i and j )  Z i j  

i = l  j=1 

1, 
" i j  = { LAN i and LAN j 

0, otherwise 

if there is a bridge between 

X is the set of all spanning trees. (1) 

In the above formulation, a combination of LAN 
and bridge delays, T, is minimized over the design 
parameters zij's. N is the total number of LANs. 
The objective function implies LAN and bridge ca- 
pacity constraints, since the delay T becomes infin- 
ity if the flow values exceed the capacities. In or- 
der to keep the problem simple, we do not consider 
any other constraints. If needed, other constraints, 
such as cost, maximum number of bridges (i.e. hops) 
between any two LANs and maximum utilization for 
LANs and bridges, can easily be incorporated into the 
formulation and the algorithm. Furthermore, dollar 
cost constraints may not play an important role in 
the design of interconnected LANs. For example, in 
the case of using identical local bridges, every active 
spanning tree topology will have exactly N - 1 bridges 
or bridge ports, resulting in the same dollar cost for 
different topologies. 
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Even this simple formulation is a difficult combina- 
torial optimization problem. Our experiments with 
greedy local search heuristics showed that the solu- 
tion space has many local minima. Since simulated 
annealing algorithms do not get stuck in local minima 
[13], our searching heuristic is based on this method., 
During the search for a minimum delay network, we 
create a sequence of topologies according to the sim- 
ulated annealing algorithm. We model each topology 
as a network of queues. We find the average network 
delay for each topology. The algorithm and the delay 
analysis will be described in the following section. 

3 Design of Minimum Delay 
Interconnected LANs 

3.1 Simulated Annealing 

Annealing is known as a thermal process for obtaining 
low energy states of a melted solid by slow cooling. In 
1953, Metropolis et al. introduced a simple algorithm 
for simulating the annealing process [16]. In 1982, 
Kirkpatrick et al. applied the Metropolis algorithm 
to a combinatorial optimization problem [17]. The 
simulated annealing algorithm has been applied to 
many areas of combinatorial optimization including 
graph theory and networking [13]. 

Simulated annealing is a local neighborhood search 
heuristic technique. Basic disadvantages of greedy 
type local search algorithms are that they may get 
stuck in local minima because they accept only cost 
improving solutions and the quality of the final re- 
sult heavily depends on the initial solution. On the 
contrary, simulated annealing algorithms occasionally 
accept deteriorations in cost in a controlled manner 
besides accepting improvements in cost. This prop- 
erty enables them to escape from local minima while 
keeping the favourable features of local search algo- 
rithms, i.e. simplicity and general applicability. 

As in other local search algorithms, we have a 
neighborhood structure and a generation mechanism 
for it. During the local neighborhood search for a 
minimum, if the transition from solution i to solution 
j is a cost-decreasing one, it is always accepted; if 
the transition is a cost-increasing one, solution j is 
accepted as the current solution with a certain prob- 
ability, p, which is given by 

p = exp ( -[Cost(j)c- Cost( i ) ]  

Cos t ( j )  > Cost(i) .  

Here, c is the control parameter and regulates the 
probability of accepting a cost-increasing solution. At 
the beginning, a large value for the control parame- 
ter is chosen, resulting in the acceptance of most of 
the transitions. During the search, we slowly reduce 
the control parameter towards zero, similar to the 
behaviour of the temperature in physical annealing. 
Lower control parameter values make the acceptance 
of cost-increasing transitions more difficult. 

cnrrent-Tree = 

[Find i n i t i d  control prrrmetcrl 

New-Tree = 
NeiKhbor of Current-Tree 

& 

Find delay of New-Tree 

c 

Cmrzent-Tree = New-Tree 

with  probability 
e- ID1 y ( N e w ) -  DI y ( C  arrent) I/= 

S t o p  annealing ? e 
Figure 2: The flowchart for the simulated annealing 
algorithm. 

Fig. 2 shows the flowchart of the annealing algo- 
rithm used for finding minimum delay topologies. In 
general, simulated annealing algorithms are defined 
by a neighborhood structure and a cooling schedule. 
The neighborhood siructure for our problem is defined 
as follows: Any two spanning tree topologies which 
have all the branches except one branch common are 
called neighbor trees. Given a spanning tree, we can 
create a neighbor tree by removing a branch resulting 
in two separate sub-trees] and adding another branch 
which will connect the two sub-trees, but will not cre- 
ate a loop. During the search for a minimum delay 
topology, we create a sequence of neighbor trees ac- 
cording to the cooling schedule. We check the feasibil- 
ity of each topology by comparing the flows of LANs 
and bridge ports with their capacities. If the topol- 
ogy is feasible, we find the average network delay as 
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described in Section 3.2. 

It has been shown in [13,14] that the simulated an- 
nealing algorithm finds the global optimum. Unfortu- 
nately, this implementation requires an infinite num- 
ber of transitions. A finite-time simulated annealing 
algorithm for finding high quality solutions can be im- 
plemented with a suitable cooling schedule. A cooling 
schedule consists of choosing an initial value for the 
control parameter, CO; the method for decrementing 
the control parameter; a finite number of transitions 
at each value of the control parameter; and the stop- 
ping criterion. Different cooling schedules have been 
proposed in [13,14,17]. We experimented with dif- 
ferent cooling schedules and chose one similar to the 
one described in [13], because of its simplicity and 
efficiency. 

The Cooling Schedule 

Chosing the Initial Value of the Control 
Parameter 
As already mentioned, the initial value of the 
control parameter, C O ,  is chosen so that almost 
all new topologies will be accepted. In order to 
achieve this, we create an initial feasible topol- 
ogy and random transitions by finding neighbor 
topologies. ad is the average of the increase in 
delay in 50 transitions. CO is chosen such that 

. - ,  
(3) 

Decrementing the Control Parameter 

The function used for decrementing the control 
parameter is given by 

C k + l  = ( Y . c k  k =  1,2,  . . .  a M 0.8 

The control parameter will be decreased after ac- 
ceptance of some fixed number of new topologies. 
However, since transitions are accepted with de- 
creasing probability, the number of topologies ex- 
amined at each Ck will increase while ck goes to 
zero. In order to  avoid extremely long iterations 
at  small values of ck, the total number of topolo- 
gies examined at each ck are bounded by a fixed 
maximum value. This value is comparable to the 
size of the neighborhood. 

Stopping Criterion 

Simulated annealing is terminated if the value of 
the delay does not change after decrementing the 

(4) 

control parameter a fixed number of times. This 
fixed number is chosen such that the algorithm 
has a sufficiently large probability of visiting at 
least a major part of the neighborhood of a given 
solution. In order to guarantee that we are not 
missing any good solutions in the neighborhood 
of the annealing solution, we terminate the algo- 
rithm by comparing the annealing solution with 
all of its neighbor topologies. 

3.2 Delay analysis 

We find the average network delay for each topol- 
ogy generated at every iteration of the simulated an- 
nealing algorithm. Because of the large number of 
topologies generated, we need an efficient way of ap- 
proximating the average network delay. We consider 
delays due to LANs and bridges. The topology is 
modelled as a network of queues. Different measure- 
ment and performance studies have shown that LAN 
traffic is bursty and consists of batches or trains of 
packets because of the existing protocols [18,19]. In 
order to account for the burstiness of the traffic and 
to have a computationally inexpensive measure, we 
use MX/M/l queues with batch Poisson arrivals. Al- 
though it is simple, MX/M/l queueing model may 
achieve an acceptable fit for the busiest periods of the 
network [19] and give us the relative performance of 
different topologies. More complex delay models can 
be used with the algorithm, but they will increase the 
running times. 

We are given the mean rate for traffic requirements 
between each LAN pair, ti , ,  in terms of batches per 
unit time. For a given topology, we can find the mean 
batch flow values of LANs and bridges, X i  and Xi,, 
respectively. We know the capacities of LANs and 
bridges, C; and C,, respectively. We assume expo- 
nential distribution for packet lengths with mean 1 
and a geometric distribution for the number of pack- 
ets in a batch with mean X. The mean service rate 
for LANs, p;,  is the LAN capacity divided by the 
mean packet length. The mean service rate for each 
direction of the bridges, pi,, is equal to l/C;,. The 
expected number of packets, E[L], in each queue is 
found in pages 156-160 of [20]. Using Little’s for- 
mula, E[T] = E[L]/XX, the expected value of the 
delay, E[T], for each MX/M/l queue is given as 

AX 
E[T] = - P where p = -. (5) 

4 1  - P )  P 

After finding the delays caused by LANs and bridges, 
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the average network delay, T, is found by using 

i = l  j = 1  

(6) 
as in [21], where E [ x ]  is the expected delay in LAN 
i; x i j  = 1 if there is a bridge between LAN i and 
LAN j, and x i j  = 0 otherwise; E [ z j ]  is the expected 
delay on the bridge port from LAN i to LAN j ;  y is 
the total in ut flow into the network given by y = 
x C L 1  C j = l t i j .  

hp 

3.3 Lower Bound for the Average Net- 
work Delay 

In order to measure the quality of our solutions, we 
found a lower bound for the minimum delay corre- 
sponding to a given set of traffic requirements. This 
is not a very tight bound, but is still useful for show- 
ing that our solutions are not very far from the global 
minimum. In this section, we describe the procedure 
for finding the lower bound for the case where all 
LANs have equal capacity and all bridges have equal 
capacity and the traffic requirements are symmetric, 
i.e. t i j  = t j i .  We will also indicate a procedure for 
the case of unequal capacities. The procedure for the 
asymmetric requirements case is more involved and it 
will not be described here. In order to find a bound 
for the delay, we start with finding a lower bound for 
the total flow on all LANs, A x ,  and total flow on all 
bridge ports, A;. For the equal capacity case, the 
lower bound for the delay due to LANs is found by 
distributing A; as uniformly as possible on all LANs. 
The bound for the delay due to bridges is found sim- 
ilarly. The overall procedure is as follows: 

1. Any traffic requirement which has LAN i as its 
source or destination has to pass through LAN i. 
The mandatory traffic on each LAN is given by 

N 

= x ( t i k  + t k i )  - tji ,  vi. (7) 
k = l  

2. We have N ( N  - 1) inter-LAN requirements. 
Some of these requirements have to be routed 
over one or more intermediate LANs. This 
creates transitional traffic. We want to mini- 
mize this transitional traffic. Since a spanning 
tree topology has (N - 1) branches, we can di- 
rectly route at most ( N  - 1) requirement pairs, 
( t i j  + t j i ) .  We can lower-bound the transitional 

traffic by assuming that the (N - 1) largest re- 
quirement pairs are directly connected and they 
do not create any transitional traffic on LANs. 

3. The remaining (N - 1)(N - 2) smaller require- 
ments have to pass through at least one interme- 
diate LAN other than their source and destina- 
tion (i.e., these requirements will pass through 
at least 3 LANs). Therefore, these requirements 
create an extra transitional traffic, ~ T R .  

In order to minimize the delay due to LANs, we 
try to distribute this transitional traffic such that 
the flow on each LAN will be the same or as close 
as possible. Therefore, total and average LAN 
flows, X z  and XL, and the transitional traffic, 
~ T R  for the lower bound are given by 

1 
XL = Ax (9) 

s = {(i,j)l i f j )  
S1 

sz = s-s1. 

= {(i ,j) l  i # j and ( t i j  + t j i )  are ( N  - 1) 
largest sum of requirement pairs} 

If the largest Ah is less than XL, all LANs will be 
assigned the same flow AL. If the LAN with the 
largest XL has already more mandatory traffic 
than XL, we do not add any transitional traffic 
to that LAN. We distribute t T R  among the other 
(N - 1) LANs such that all of them will have 
the same flow. If the second largest A& is higher 
than this traffic, we skip the second LAN and try 
to distribute ~ T R  among the (N - 2) LANs. We 
continue in this way until we spread the combi- 
nation of mandatory and transitional traffic as 
uniformly as possible among all LANs. 
We use the following approach if LANs have dif- 
ferent capacities: We find the total traffic simi- 
larly and distribute this traffic to  different LANs 
as in the well-known capacity assignment prob- 
lem. However, in our case, capacities are given 
and the portions of traffic are assigned. We can 
prove analytically that the described distribution 
of total LAN flow gives the minimum delay. 

4. Bridge flows can be calculated similarly. In or- 
der to minimize the effect of transitional traffic, 
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the ( N  - 1 )  largest requirement pairs can be car- 
ried by bridges directly connecting their sources 
and destinations. The rest of the requirements 
have to pass through at  least two bridges. Simi- 
lar to LAN flows, we spread the total bridge flow 
among 2( N - 1 )  bridge ports as uniformly as pas- 
sible. Therefore, total and average bridge port 
flows, A$ and AB, for the lower bound is given 
by 

AT, (tij + t j i )  + 2 . t T R  ( 1 1 )  

AT, ( 1 2 )  

(i,j )E St 

1 
2 ( N  - 1) 

AB = - 

If the bridge which was assigned the largest ti, 
has already higher flow than AB, we do not add 
any transitional traffic to the ports of that bridge. 
We distribute 2tTR among the other 2 ( N  - 2 )  
bridge ports such that all of them will have the 
same traffic if possible. If not, and the second 
largest tij is also higher than AB, we skip the 
second bridge and try to distribute 2tTR among 
the 2 ( N  - 3) bridge ports. This procedure is 
continued until we spread the combination of di- 
rect and transitional traffic as uniformly as pos- 
sible among all bridges. If bridges have different 
capacities, flows can be found as in the case of 
LANs. 

5. After finding the flow values for LANs and bridge 
ports, we calculate the delay for N LANs and 
2 ( N -  1 )  bridge ports and thus find a lower bound 
on the average network delay. 

4 Design of interconnected 
LAN-MAN Networks 

There is a growing interest in the interconnection of 
geographically dispersed LANs or bridged LAN clus- 
ters by Metropolitan Area Networks (MANS). FDDI 
and IEEE 802.6 DQDB MANS are promising candi- 
dates as backbone MANS interconnecting LAN clus- 
ters. There are also proposals of broadband ser- 
vices such as Switched Multi-Megabit Data Service 
(SMDS) for interconnecting LAN clusters using MAN 
technology [15]. 

Fig. 3 shows an example interconnected LAN-MAN 
network with several clusters. In this section, we 
will extend the simulated annealing algorithm for the 
design of minimum-delay LAN-MAN networks. We 
assume that we know which LAN, belongs to which 

L A N  

0 L A N - L A N  Bridse 

L A N - M A N  Bridge 

Figure 3: An example LAN-MAN topology. 

cluster. These clusters can be formed because of ge- 
ographical, network management or security reasons. 
We know the traffic requirements between all LAN 
pairs. We want to find a minimum-delay LAN-MAN 
topology. As in the bridged LAN case, we do not 
have any constraints other than capacity constraints. 
Again, we consider interconnected LANs with trans- 
parent bridges. Overall topology has to be a spanning 
tree because of the bridges. We assume that we have 
only one MAN. This MAN can be FDDI, IEEE 802.6 
DQDB or instead of the MAN we can have the SMDS 
as a backbone network. This backbone is modeled as 
a central node. One .approach to find a good LAN- 
MAN topology is solving the problem as if it were a 
LAN-LAN problem with many nodes and adding an 
additional constraint forcing LANs in different clus- 
ters to be interconnected through the MAN. Increas- 
ing the number of LANs increases the running time 
of the simulated annealing algorithm quickly. We 
will use an approach of decomposing the problem 
into smaller problems for each cluster and hence re- 
duce the running time. In the first phase, we assume 
that each cluster is connected to the MAN with only 
one bridge. This is a reasonable assumption because 
LAN-MAN bridges are more expensive than ordinary 
bridges. There may also be privacy reasons to use 
only one LAN-MAN bridge. In the case of using more 
than one LAN-MAN bridge, some of the intra-cluster 
traffic has to pass through the MAN, because of the 
spanning tree requirement. As shown in Fig. 4, there 
will be seperate spanning trees connected through the 
MAN in each cluster. This may not be desirable for 
security reasons. 

The problem is suitable for decomposition because 
the intra-cluster traffic does not effect the other clus- 
ters. Therefore, the topology of each cluster can be 
determined by considering only the intra-cluster traf- 
fic and the traffic between the MAN and that cluster. 
At the begining, we are given an overall traffic re- 
quirements matrix, [ t i j ] ~ ~ ~  , for the whole network. 
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LAN 

6 LAN-LAN Bnidge 

LAN-MAN Bridge 

Figure 4: An example topology with more than one 
LAN-MAN bridge per cluster. 

We can calculate smaller traffic requirement matrices 
[tb](Nk+l)x(Nk+l) where Nk is the number of LANs 
in cluster k. For example, if the original traffic re- 
quirements for the topology in Fig. 3 are given by 

tl1,l 
tl2,l . ' .  

tl8,l 

. .  

t7,7 . .. 

we can calculate the traffic matrix, 
as follows: 

for cluster 1 

[t! .] = ' J 

where 

After finding the new traffic requirement matrices 
for each cluster, we can solve each sub-problem inde- 
pendently. At the beginning, we allow only one LAN- 
MAN bridge per cluster. We use the simulated an- 
nealing algorithm as in the LAN-LAN problem with 
the additional constraint that each cluster will be con- 
nected to the MAN node with only one bridge. After 
finding the overall topology, we calculate the maxi- 
mum cluster access delay T6A for each cluster. T t A  

is the maximum delay from any LAN in cluster k 
to the MAN. The maximum end-to-end delay in the 
overall network can be calculated as a summation of 
the two largest TEA and the delay due to the MAN, 
TMAN.  The LAN access delay between LAN i and 
the MAN, TLA, is the summation of the delays of all 
LANs p and bridges (r, s) lying on the path from LAN 
i to the MAN, P ( i , M A N ) ,  and is given by 

If T$A exceeds a threshold for a cluster, we pro- 
ceed to the second phase: We allow that cluster to 
have two LAN-MAN bridges. Because of the spanning 
tree requirement, that cluster will have two sub-trees 
as shown in Fig. 4. Since this is likely to reduce the 
depth of the tree, new T$A will be lower. As we have 
explained before, we can change the topology of one 
cluster without effecting the other clusters. We find 
the minimum-delay topology for that cluster as in the 
first phase, but this time we constrain the maximum 
number of LAN-MAN bridges to two. If T i A  drops 
below the threshold, we stop. Otherwise, we allow 
the cluster to have one more LAN-MAN bridge. We 
continue increasing the number of LAN-MAN bridges 
until TkA drops below the threshold. We repeat this 
procedure for all clusters. As a result, some of the 
clusters might have one LAN-MAN bridge, some of 
them might have more depending on their traffic re- 
quirements. 

Another approach could be using cost constraints 
to determine the number of LAN-MAN bridges, but 
this would increase the complexity of the problem and 
currently high LAN-MAN bridge prices would force us 
to use as small as possible number of them. In many 
practical problems, one LAN-MAN bridge per cluster 
is sufficient and the overall minimum-delay topology 
is found in one phase. 

A variation of the problem occurs in the case of us- 
ing SMDS for interconnecting the clusters of LANs, 
since SMDS will provide communications at DS1 
(1.5Mbps) or DS3 (45Mbps) rates [15]. During the 
design process, we have to decide which rate of ser- 
vice and, in the case of DS3, which access class (4, 
10, 16, 34Mbps) will be used for each cluster. A pos- 
sible approach can be described as follows: At first, 
we choose the lowest and the cheapest rate among all 
SMDS access classes for all clusters. We find the min- 
imum delay cluster topologies and calculate TiA .  If it 
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# of 
LANs 

*:  Global minimum in complete enumeration. All delay values are in milliseconds. 

CPU Time Tmin Tmaz TLower %in Tmin Tmean 
Annealing Annealing Bound Local Search 10000 samples 10000 samples PCAT / CONVEX 

is acceptable, we stop; otherwise we choose the next 
higher SMDS access class for clusters with unaccept- 
able T$A. We continue increasing the SMDS rates 
for each cluster until we are satisfied with T:A. If 
increasing the rate of SMDS does not reduce TiA, we 
can also increase the number of LAN-SMDS bridges 
connected to a cluster as explained before. 

5 Results and Discussion 

5.1 Methodology for the Experiments 

We performed experiments on networks with 6 , 7 ,  10, 
15, 20 and 30 LANs. For 6 and 7 LAN problems, we 
enumerated all possible spanning tree topologies and 
found the global minimum. This enabled us to com- 
pare the solution of the simulated annealing directly 
with the global minimum. For larger problems, we 
used several different goodness measures. In order to 
estimate the range for the simulated annealing results, 
we ran the algorithm with different random seeds on 
the same problem. We compared our solutions with 
the lower bound described in Section 3.3. The simu- 
lated annealing algorithm is a local search heuristic. 
In order to see its advantages over a standard greedy 
local search , we implemented a local search heuristic 
and run it several times with different random initial 
topologies. We compared the best topology found 
by the local search algorithm with the simulated an- 
nealing results. We also used the goodness measure 
described in [ll]. In this measure, 10,000 randomfea- 
sible topologies were generated. A histogram corre- 
sponding to the delay of these topologies was created. 
This was then compared with the simulated annealing 
solutions. 

Different patterns used for the traffic requirements 
are as follows: 

Three of the traffic matrices consist of uniformly 

distributed random traffic requirements with dif- 
ferent average values. These average values cor- 
respond to light, medium and heavy loads. In 
order to consider the unbalanced inter-LAN traf- 
fic patterns, some rows and columns of the traffic 
matrices have larger average values than the oth- 
ers. These rows or columns might correspond to 
LANs connected to file servers or host computers. 

One of the traffic matrices is such that the traffic 
between any two LANs decreases linearly with 
the “distance” between them. For example, the 
traffic requirements between LAN 1 and LAN 2 
are larger than those between LAN 1 and LAN 5. 
All traffic requirements have deterministic values 
according to the “distance” measure. 

The last traffic matrix is uniform. All traffic re- 
quirements have the same deterministic value. 

The mean packet length, I ,  is equal to 192 bytes as 
measured in [19]. The average number of packets in a 
batch, X is 8. The capacity of LANs is 10 Mbits/sec 
which is the standard for CSMA/CD LANs. The ca- 
pacity of LAN-LAN bridges is 6,000 packets/sec and 
the capacity of LAN-MAN bridges are 10,000 pack- 
ets/sec for these 192-byte long packets. The threshold 
for T$A in the LAN-MAN problem is 20 msec. 

5.2 Results for the Interconnected 
LAN Problem 

Table 1 summarizes the results for the interconnected 
LAN problem in the case of medium load random 
traffic requirements. As an example for the medium 
load, the requirement matrix for the 15 LAN prob- 
lem consists of uniformly distributed random require- 
ments with an average of 3 batches per second. Two 
rows, corresponding to LANs with file servers, have 
higher requirements with average 10 batches per sec- 
ond. Corresponding minimum delay topologies found 
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by the algorithm are such that average utilization of 
LANs and bridges are 26% and 11%, respectively. 
The minimum and maximum delay values for the sim- 
ulated annealing algorithm are found by running the 
algorithm with 10 different random initial topologies. 
The small range of the results shows that the final 
solution is not dependent on the initial topology. For 
small problems, the algorithm found the global mini- 
mum most of the time. It found slightly higher delay 
topologies the rest of the time. Simulated anneal- 
ing results are in the range of 39% to 90% of the 
lower bound. As we have mentioned before, the lower 
bound is not very tight. It can be observed in Table 
1 that the values of the lower bound for 6 and 7 LAN 
problems are 39% and 45% smaller than the global 
minimum values, respectively. Therefore, we conjec- 
ture that the annealing solutions are not very far from 
the global minimum values. 

The simulated annealing algorithm outperformed 
multiple runs of the greedy local search algorithm in 
all cases studied. Comparison of the simulated an- 
nealing results with the best solution found by run- 
ning the greedy local search algorithm with different 
random initial topologies show that the simulated an- 
nealing algorithm does not get stuck in a local mini- 
mum. 

Related columns of Table 1 show that the simu- 
lated algorithm finds better topologies than the best 
of 10,000 randomly generated topologies. Histograms 
for the delay of these random topologies show that 
most of them have significantly higher delays than 
the simulated annealing solutions. 

The last column in Table 1 shows the CPU times 
for the simulated annealing algorithm on a PC/AT 
and CONVEX 120 mini-supercomputer. For smaller 
problems, the algorithm finds high quality solutions 
very quickly even on a personal computer. For larger 
problems, running times are still reasonable. 

Clust 1 
Clust 2 
Clust 3 
Overall 

5.3 Results for the Interconnected 
LAN-MAN Problem 

Cluster CPU 
# of T,.,, Tmaz Access Time 
LANs A a n e a l i q  Annealing Delay PC-AT 

6 8.421. 8.480 14.643 22 s - 
5 7.156' 7.352 14.417 9 s 
7 8.572. 8.674 15.553 36 s 

67 s 18 9.4d3' 9.667 - 

Table 2 shows the results for two LAN-MAN prob- 
lems. The first problem has three small clusters as 
in the example shown in Fig. 3. Because of the small 
size of the clusters, we could enumerate all possible 
topologies and found the global minimum. As shown 
in the table, the simulated annealing algorithm found 
the global optimum for each cluster. Since the overall 
topology is a combination of these cluster topologies, 
it is also globally optimal for the first problem. The 
short overall running time for the first problem shows 

the advantage of decomposing the problem. If we 
had approached the problem as an 18 LAN problem 
without decomposing it, the running time would have 
been around 20 minutes instead of 67 seconds. 

In the second problem, there are more clusters and 
some clusters have more LANs. Although we do not 
know the overall global optimum, we can still check 
for the global optimum for small clusters. Goodness 
measures described before show that we have good 
topologies for larger clusters. Therefore, we conjec- 
ture that the simulated annealing algorithm finds high 
quality solutions for the LAN-MAN problem. Run- 
ning times for the algorithm are short because of the 
decomposition of the problem. 

6 Conclusion 

We have described a method based on simulated an- 
nealing for finding minimum-delay topologies of inter- 
connected LANs. For the cases studied, the simulated 
annealing algorithm finds the best topology much 
faster than complete enumeration for small problems. 
For larger problems, several goodness measures show 
that the algorithm finds good topologies which have 
average delays in the neighborhood of the global min- 
imum. We have extended the algorithm for finding 
minimum delay topologies for the LAN-MAN inter- 
connection problem. We have rapidly found good 
topologies for the case in which a MAN is intercon- 
necting several clusters of LANs. 

Although we have considered IEEE 802.3-5 LANs 
and spanning tree topologies, the same methodology 
can be used for other LANs and general topologies. 
We have focused on the minimum delay problem. It is 
also possible to modify the algorithm to incorporate 
many constraints, such as cost, maximum number of 
bridges (i.e., hops) between any two LANs and max- 
imum utilization for LANs and bridge ports. 
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