
TOPOLOGICAL DESIGN OF INTERCONNECTED
LAN-MAN NETWORKS*

C e m Ersoy Shivendra S. Panwar

Department of Electrical Engineering
Polytechnic University, Brooklyn, New York 11201

Abstract

This paper describes a methodology for designing in-
terconnected LAN-MAN networks with the objective
of minimizing the average network delay. We con-
sider IEEE 802.3-5 LANs interconnected by trans-
parent bridges. These bridges are required to form a
spanning tree topology. The optimization algorithm
for finding a minimum delay spanning tree topology
is based on simulated annealing. In order to measure
the quality of the solutions, we find a lower bound
for the average network delay. The comparison of our
results with this lower bound and several other good-
ness measures show that the solutions are not very far
from the global minimum. We extend our algorithm
for finding minimum delay LAN-MAN topologies con-
sisting of FDDI MANS or Switched Multi-Megabit
Data Service (SMDS) interconnecting several clusters
of bridged LANs.

1 Introduction

This paper describes a heuristic algorithm for design-
ing interconnected LAN-MAN networks with the ob-
jective of minimizing the average network delay. We
consider IEEE 802.3-5 LANs interconnected by trans-
parent bridges described in IEEE Standard 802.1 Part
D [l]. These bridges are widely used for interconnect-
ing CSMA/CD LANs and they can also be used for
other types of LANs. The need for covering a large
area and many nodes on LANs is fulfilled by these
bridges (21. No participation by an end station is
necessary for making use of the services provided by
transparent bridges. These bridges are self-learning
and self-configuring. They learn the location of end

*This work was supported by the New York State Science
and Technology Foundation's Center for Advanced Technology
in Telecommunicatons, Polytechnic University, Brooklyn, New
York and by the NSF under grant NCR-8909719

stations by observing source addresses. They route
frames by comparing the destination addresses to the
table of learned addresses. Given any arbitrary topol-
ogy, bridges configure themselves to be part of a de-
terministic active spanning tree topology [3]. They
adapt to changes in the topology, such as failures,
and the movement of stations without network man-
agement intervention.

The performance of bridged CSMA/CD LANs has
been studied in [4,5,6,7,8]. The problem of determin-
ing which gateways to use to interconnect existing
data networks has been discussed in [9,10]. Simu-
lated annealing technique has been used for design-
ing minimum cost interconnected CSMA/CD LANs
in [ll]. The design of optimally locating bridges and
repeaters for minimizing the average delay and fast
algorithms for special cases have been studied in [12].

We address the problem of designing minimum de-
lay spanning tree topologies for interconnecting LANs
given the traffic requirements. This problem is a dif-
ficult combinatorial optimization problem because of
many local minima. The optimization method for
finding the minimum delay spanning tree topology
is based on simulated annealing, since this method
works well on problems with many local minima [13].
Although simulated annealing heuristics can find the
global optimum, this may require infinite number of
transitions [13,14]. Finite-time implementations of
the algorithm approximate an optimal solution. In
order to measure the quality of our solutions, we find
a lower bound for the average network delay cor-
responding to the given set of traffic requirements.
We compare the results of the optimization algorithm
with this lower bound. We use other goodness mea-
sures for showing the quality of the solutions.

We also consider the LAN-MAN interconnection
problem. FDDI LANs are already used as backbone
MANS for the interconnection of clusters of bridged
LANs. The IEEE 802.6 DQDB (Distributed Queue

2260
10B.l.l

CH3133-619210000-2260 $3.00 0 1992 IEEE IN FOCOM '92

Dual Bus) MAN is a different alternative backbone
network. Another possibility for the interconnec-
tion of bridged LAN clusters is the Switched Multi-
Megabit Data Service (SMDS) which is to be offered
by the Local Exchange Carriers in the early 1990s [15].
We describe an extended version of the algorithm b r
finding minimum delay LAN-MAN topologies.

The remainder of this paper is organized in the fol-
lowing way: In Section 2, we describe the problem and
our assumptions. Section 3 covers the design of inter-
connected LAN networks. We describe the heuristic
algorithm based on simulated annealing and the cal-
culation of the network delay in Sections 3.1 and 3.2.
We find a lower bound for the average network delay
corresponding to a given set of traffic requirements in
Section 3.3. In Section 4, we extend our methodology
to LAN-MAN networks. Results and several good-
ness measures are given in Section 5. Section 6 is the
conclusion.

Figure 1: An example of a bridged LAN network.

2 Definition and Formulation
of the Problem

An example physical topology for a group of bridged
LANs is shown in Fig. 1. In order to avoid looping of
packets, transparent bridges require the active topol-
ogy to be a spanning tree. One of the possible active
spanning trees is shown with bold lines. During the
normal operation, only the bridges on the active tree
forward packets. Other bridges remain idle unless ac-
tivated to form a new tree in the case of failures. In
our problem, we are given N LANs and the traffic re-
quirements between all LAN pairs. Our goal is finding
the spanning tree topology with minimum average de-
lay for this set of requirements. We do not have any

constraint on where to place the bridges. In other
words, we want to find where to place N - 1 bridges
among all possible LAN pairs such that they form a
spanning tree with minimum delay. After finding the
minimum delay tree, bridges can be set-up to choose
this tree as the active topology by adjusting the pa-
rameters of the self-configuration algorithm [3].

In Fig. 1, LANs are represented as nodes and
bridges are represented as branches of a graph. Since
we are more interested in the shape of the minimum
delay topology, we assume that all bridges have two
ports. Many of the existing bridges are two-port
bridges, but we can also model a multi-port bridge
as several branches and a central node. In that case,
branches in the graph will correspond to bridge ports
rather than whole bridges. In that way, both two-port
and multi-port bridges can be used for implementing
minimum delay spanning tree topologies.

The problem of finding the minimum delay span-
ning tree topology is formulated as described below:

N
min T = x D e l a y (L A N i) +

i=l { + i j} E X

N N
Delay(Bridge btw i and j) Z i j

i = l j=1

1,
" i j = { LAN i and LAN j

0, otherwise

if there is a bridge between

X is the set of all spanning trees. (1)

In the above formulation, a combination of LAN
and bridge delays, T, is minimized over the design
parameters zij's. N is the total number of LANs.
The objective function implies LAN and bridge ca-
pacity constraints, since the delay T becomes infin-
ity if the flow values exceed the capacities. In or-
der to keep the problem simple, we do not consider
any other constraints. If needed, other constraints,
such as cost, maximum number of bridges (i.e. hops)
between any two LANs and maximum utilization for
LANs and bridges, can easily be incorporated into the
formulation and the algorithm. Furthermore, dollar
cost constraints may not play an important role in
the design of interconnected LANs. For example, in
the case of using identical local bridges, every active
spanning tree topology will have exactly N - 1 bridges
or bridge ports, resulting in the same dollar cost for
different topologies.

10B.1.2
2261

Even this simple formulation is a difficult combina-
torial optimization problem. Our experiments with
greedy local search heuristics showed that the solu-
tion space has many local minima. Since simulated
annealing algorithms do not get stuck in local minima
[13], our searching heuristic is based on this method.,
During the search for a minimum delay network, we
create a sequence of topologies according to the sim-
ulated annealing algorithm. We model each topology
as a network of queues. We find the average network
delay for each topology. The algorithm and the delay
analysis will be described in the following section.

3 Design of Minimum Delay
Interconnected LANs

3.1 Simulated Annealing

Annealing is known as a thermal process for obtaining
low energy states of a melted solid by slow cooling. In
1953, Metropolis et al. introduced a simple algorithm
for simulating the annealing process [16]. In 1982,
Kirkpatrick et al. applied the Metropolis algorithm
to a combinatorial optimization problem [17]. The
simulated annealing algorithm has been applied to
many areas of combinatorial optimization including
graph theory and networking [13].

Simulated annealing is a local neighborhood search
heuristic technique. Basic disadvantages of greedy
type local search algorithms are that they may get
stuck in local minima because they accept only cost
improving solutions and the quality of the final re-
sult heavily depends on the initial solution. On the
contrary, simulated annealing algorithms occasionally
accept deteriorations in cost in a controlled manner
besides accepting improvements in cost. This prop-
erty enables them to escape from local minima while
keeping the favourable features of local search algo-
rithms, i.e. simplicity and general applicability.

As in other local search algorithms, we have a
neighborhood structure and a generation mechanism
for it. During the local neighborhood search for a
minimum, if the transition from solution i to solution
j is a cost-decreasing one, it is always accepted; if
the transition is a cost-increasing one, solution j is
accepted as the current solution with a certain prob-
ability, p, which is given by

p = exp (-[Cost(j)c- Cost(i)]

Cos t (j) > Cost(i) .

Here, c is the control parameter and regulates the
probability of accepting a cost-increasing solution. At
the beginning, a large value for the control parame-
ter is chosen, resulting in the acceptance of most of
the transitions. During the search, we slowly reduce
the control parameter towards zero, similar to the
behaviour of the temperature in physical annealing.
Lower control parameter values make the acceptance
of cost-increasing transitions more difficult.

cnrrent-Tree =

[Find i n i t i d control prrrmetcrl

New-Tree =
NeiKhbor of Current-Tree

&

Find delay of New-Tree

c

Cmrzent-Tree = New-Tree

with probability
e- ID1 y (N e w) - DI y (C arrent) I/=

S t o p annealing ? e
Figure 2: The flowchart for the simulated annealing
algorithm.

Fig. 2 shows the flowchart of the annealing algo-
rithm used for finding minimum delay topologies. In
general, simulated annealing algorithms are defined
by a neighborhood structure and a cooling schedule.
The neighborhood siructure for our problem is defined
as follows: Any two spanning tree topologies which
have all the branches except one branch common are
called neighbor trees. Given a spanning tree, we can
create a neighbor tree by removing a branch resulting
in two separate sub-trees] and adding another branch
which will connect the two sub-trees, but will not cre-
ate a loop. During the search for a minimum delay
topology, we create a sequence of neighbor trees ac-
cording to the cooling schedule. We check the feasibil-
ity of each topology by comparing the flows of LANs
and bridge ports with their capacities. If the topol-
ogy is feasible, we find the average network delay as

10B. 1.3
2262

described in Section 3.2.

It has been shown in [13,14] that the simulated an-
nealing algorithm finds the global optimum. Unfortu-
nately, this implementation requires an infinite num-
ber of transitions. A finite-time simulated annealing
algorithm for finding high quality solutions can be im-
plemented with a suitable cooling schedule. A cooling
schedule consists of choosing an initial value for the
control parameter, CO; the method for decrementing
the control parameter; a finite number of transitions
at each value of the control parameter; and the stop-
ping criterion. Different cooling schedules have been
proposed in [13,14,17]. We experimented with dif-
ferent cooling schedules and chose one similar to the
one described in [13], because of its simplicity and
efficiency.

The Cooling Schedule

Chosing the Initial Value of the Control
Parameter
As already mentioned, the initial value of the
control parameter, C O , is chosen so that almost
all new topologies will be accepted. In order to
achieve this, we create an initial feasible topol-
ogy and random transitions by finding neighbor
topologies. ad is the average of the increase in
delay in 50 transitions. CO is chosen such that

. - ,
(3)

Decrementing the Control Parameter

The function used for decrementing the control
parameter is given by

C k + l = (Y . c k k = 1,2, . . . a M 0.8

The control parameter will be decreased after ac-
ceptance of some fixed number of new topologies.
However, since transitions are accepted with de-
creasing probability, the number of topologies ex-
amined at each Ck will increase while ck goes to
zero. In order to avoid extremely long iterations
at small values of ck, the total number of topolo-
gies examined at each ck are bounded by a fixed
maximum value. This value is comparable to the
size of the neighborhood.

Stopping Criterion

Simulated annealing is terminated if the value of
the delay does not change after decrementing the

(4)

control parameter a fixed number of times. This
fixed number is chosen such that the algorithm
has a sufficiently large probability of visiting at
least a major part of the neighborhood of a given
solution. In order to guarantee that we are not
missing any good solutions in the neighborhood
of the annealing solution, we terminate the algo-
rithm by comparing the annealing solution with
all of its neighbor topologies.

3.2 Delay analysis

We find the average network delay for each topol-
ogy generated at every iteration of the simulated an-
nealing algorithm. Because of the large number of
topologies generated, we need an efficient way of ap-
proximating the average network delay. We consider
delays due to LANs and bridges. The topology is
modelled as a network of queues. Different measure-
ment and performance studies have shown that LAN
traffic is bursty and consists of batches or trains of
packets because of the existing protocols [18,19]. In
order to account for the burstiness of the traffic and
to have a computationally inexpensive measure, we
use MX/M/l queues with batch Poisson arrivals. Al-
though it is simple, MX/M/l queueing model may
achieve an acceptable fit for the busiest periods of the
network [19] and give us the relative performance of
different topologies. More complex delay models can
be used with the algorithm, but they will increase the
running times.

We are given the mean rate for traffic requirements
between each LAN pair, ti , , in terms of batches per
unit time. For a given topology, we can find the mean
batch flow values of LANs and bridges, X i and Xi,,
respectively. We know the capacities of LANs and
bridges, C; and C,, respectively. We assume expo-
nential distribution for packet lengths with mean 1
and a geometric distribution for the number of pack-
ets in a batch with mean X. The mean service rate
for LANs, p;, is the LAN capacity divided by the
mean packet length. The mean service rate for each
direction of the bridges, pi,, is equal to l/C;,. The
expected number of packets, E[L], in each queue is
found in pages 156-160 of [20]. Using Little’s for-
mula, E[T] = E[L]/XX, the expected value of the
delay, E[T], for each MX/M/l queue is given as

AX
E[T] = - P where p = -. (5)

4 1 - P) P

After finding the delays caused by LANs and bridges,

10B.1.4
2263

the average network delay, T, is found by using

i = l j = 1

(6)
as in [21], where E [x] is the expected delay in LAN
i; x i j = 1 if there is a bridge between LAN i and
LAN j, and x i j = 0 otherwise; E [z j] is the expected
delay on the bridge port from LAN i to LAN j ; y is
the total in ut flow into the network given by y =
x C L 1 C j = l t i j .

hp

3.3 Lower Bound for the Average Net-
work Delay

In order to measure the quality of our solutions, we
found a lower bound for the minimum delay corre-
sponding to a given set of traffic requirements. This
is not a very tight bound, but is still useful for show-
ing that our solutions are not very far from the global
minimum. In this section, we describe the procedure
for finding the lower bound for the case where all
LANs have equal capacity and all bridges have equal
capacity and the traffic requirements are symmetric,
i.e. t i j = t j i . We will also indicate a procedure for
the case of unequal capacities. The procedure for the
asymmetric requirements case is more involved and it
will not be described here. In order to find a bound
for the delay, we start with finding a lower bound for
the total flow on all LANs, A x , and total flow on all
bridge ports, A;. For the equal capacity case, the
lower bound for the delay due to LANs is found by
distributing A; as uniformly as possible on all LANs.
The bound for the delay due to bridges is found sim-
ilarly. The overall procedure is as follows:

1. Any traffic requirement which has LAN i as its
source or destination has to pass through LAN i.
The mandatory traffic on each LAN is given by

N

= x (t i k + t k i) - tji , vi. (7)
k = l

2. We have N (N - 1) inter-LAN requirements.
Some of these requirements have to be routed
over one or more intermediate LANs. This
creates transitional traffic. We want to mini-
mize this transitional traffic. Since a spanning
tree topology has (N - 1) branches, we can di-
rectly route at most (N - 1) requirement pairs,
(t i j + t j i) . We can lower-bound the transitional

traffic by assuming that the (N - 1) largest re-
quirement pairs are directly connected and they
do not create any transitional traffic on LANs.

3. The remaining (N - 1)(N - 2) smaller require-
ments have to pass through at least one interme-
diate LAN other than their source and destina-
tion (i.e., these requirements will pass through
at least 3 LANs). Therefore, these requirements
create an extra transitional traffic, ~ T R .

In order to minimize the delay due to LANs, we
try to distribute this transitional traffic such that
the flow on each LAN will be the same or as close
as possible. Therefore, total and average LAN
flows, X z and XL, and the transitional traffic,
~ T R for the lower bound are given by

1
XL = Ax (9)

s = {(i,j)l i f j)
S1

sz = s-s1.

= {(i ,j) l i # j and (t i j + t j i) are (N - 1)
largest sum of requirement pairs}

If the largest Ah is less than XL, all LANs will be
assigned the same flow AL. If the LAN with the
largest XL has already more mandatory traffic
than XL, we do not add any transitional traffic
to that LAN. We distribute t T R among the other
(N - 1) LANs such that all of them will have
the same flow. If the second largest A& is higher
than this traffic, we skip the second LAN and try
to distribute ~ T R among the (N - 2) LANs. We
continue in this way until we spread the combi-
nation of mandatory and transitional traffic as
uniformly as possible among all LANs.
We use the following approach if LANs have dif-
ferent capacities: We find the total traffic simi-
larly and distribute this traffic to different LANs
as in the well-known capacity assignment prob-
lem. However, in our case, capacities are given
and the portions of traffic are assigned. We can
prove analytically that the described distribution
of total LAN flow gives the minimum delay.

4. Bridge flows can be calculated similarly. In or-
der to minimize the effect of transitional traffic,

10B.1.5
2264

the (N - 1) largest requirement pairs can be car-
ried by bridges directly connecting their sources
and destinations. The rest of the requirements
have to pass through at least two bridges. Simi-
lar to LAN flows, we spread the total bridge flow
among 2(N - 1) bridge ports as uniformly as pas-
sible. Therefore, total and average bridge port
flows, A$ and AB, for the lower bound is given
by

AT, (tij + t j i) + 2 . t T R (1 1)

AT, (1 2)

(i,j)E St

1
2 (N - 1)

AB = -

If the bridge which was assigned the largest ti,
has already higher flow than AB, we do not add
any transitional traffic to the ports of that bridge.
We distribute 2tTR among the other 2 (N - 2)
bridge ports such that all of them will have the
same traffic if possible. If not, and the second
largest tij is also higher than AB, we skip the
second bridge and try to distribute 2tTR among
the 2 (N - 3) bridge ports. This procedure is
continued until we spread the combination of di-
rect and transitional traffic as uniformly as pos-
sible among all bridges. If bridges have different
capacities, flows can be found as in the case of
LANs.

5. After finding the flow values for LANs and bridge
ports, we calculate the delay for N LANs and
2 (N - 1) bridge ports and thus find a lower bound
on the average network delay.

4 Design of interconnected
LAN-MAN Networks

There is a growing interest in the interconnection of
geographically dispersed LANs or bridged LAN clus-
ters by Metropolitan Area Networks (MANS). FDDI
and IEEE 802.6 DQDB MANS are promising candi-
dates as backbone MANS interconnecting LAN clus-
ters. There are also proposals of broadband ser-
vices such as Switched Multi-Megabit Data Service
(SMDS) for interconnecting LAN clusters using MAN
technology [15].

Fig. 3 shows an example interconnected LAN-MAN
network with several clusters. In this section, we
will extend the simulated annealing algorithm for the
design of minimum-delay LAN-MAN networks. We
assume that we know which LAN, belongs to which

L A N

0 L A N - L A N Bridse

L A N - M A N Bridge

Figure 3: An example LAN-MAN topology.

cluster. These clusters can be formed because of ge-
ographical, network management or security reasons.
We know the traffic requirements between all LAN
pairs. We want to find a minimum-delay LAN-MAN
topology. As in the bridged LAN case, we do not
have any constraints other than capacity constraints.
Again, we consider interconnected LANs with trans-
parent bridges. Overall topology has to be a spanning
tree because of the bridges. We assume that we have
only one MAN. This MAN can be FDDI, IEEE 802.6
DQDB or instead of the MAN we can have the SMDS
as a backbone network. This backbone is modeled as
a central node. One .approach to find a good LAN-
MAN topology is solving the problem as if it were a
LAN-LAN problem with many nodes and adding an
additional constraint forcing LANs in different clus-
ters to be interconnected through the MAN. Increas-
ing the number of LANs increases the running time
of the simulated annealing algorithm quickly. We
will use an approach of decomposing the problem
into smaller problems for each cluster and hence re-
duce the running time. In the first phase, we assume
that each cluster is connected to the MAN with only
one bridge. This is a reasonable assumption because
LAN-MAN bridges are more expensive than ordinary
bridges. There may also be privacy reasons to use
only one LAN-MAN bridge. In the case of using more
than one LAN-MAN bridge, some of the intra-cluster
traffic has to pass through the MAN, because of the
spanning tree requirement. As shown in Fig. 4, there
will be seperate spanning trees connected through the
MAN in each cluster. This may not be desirable for
security reasons.

The problem is suitable for decomposition because
the intra-cluster traffic does not effect the other clus-
ters. Therefore, the topology of each cluster can be
determined by considering only the intra-cluster traf-
fic and the traffic between the MAN and that cluster.
At the begining, we are given an overall traffic re-
quirements matrix, [t i j] ~ ~ ~ , for the whole network.

10B.1.6
2265

LAN

6 LAN-LAN Bnidge

LAN-MAN Bridge

Figure 4: An example topology with more than one
LAN-MAN bridge per cluster.

We can calculate smaller traffic requirement matrices
[tb](Nk+l)x(Nk+l) where Nk is the number of LANs
in cluster k. For example, if the original traffic re-
quirements for the topology in Fig. 3 are given by

tl1,l
tl2,l . ' .

tl8,l

. .

t7,7 . ..

we can calculate the traffic matrix,
as follows:

for cluster 1

[t! .] = ' J

where

After finding the new traffic requirement matrices
for each cluster, we can solve each sub-problem inde-
pendently. At the beginning, we allow only one LAN-
MAN bridge per cluster. We use the simulated an-
nealing algorithm as in the LAN-LAN problem with
the additional constraint that each cluster will be con-
nected to the MAN node with only one bridge. After
finding the overall topology, we calculate the maxi-
mum cluster access delay T6A for each cluster. T t A

is the maximum delay from any LAN in cluster k
to the MAN. The maximum end-to-end delay in the
overall network can be calculated as a summation of
the two largest TEA and the delay due to the MAN,
TMAN. The LAN access delay between LAN i and
the MAN, TLA, is the summation of the delays of all
LANs p and bridges (r, s) lying on the path from LAN
i to the MAN, P (i , M A N) , and is given by

If T$A exceeds a threshold for a cluster, we pro-
ceed to the second phase: We allow that cluster to
have two LAN-MAN bridges. Because of the spanning
tree requirement, that cluster will have two sub-trees
as shown in Fig. 4. Since this is likely to reduce the
depth of the tree, new T$A will be lower. As we have
explained before, we can change the topology of one
cluster without effecting the other clusters. We find
the minimum-delay topology for that cluster as in the
first phase, but this time we constrain the maximum
number of LAN-MAN bridges to two. If T i A drops
below the threshold, we stop. Otherwise, we allow
the cluster to have one more LAN-MAN bridge. We
continue increasing the number of LAN-MAN bridges
until TkA drops below the threshold. We repeat this
procedure for all clusters. As a result, some of the
clusters might have one LAN-MAN bridge, some of
them might have more depending on their traffic re-
quirements.

Another approach could be using cost constraints
to determine the number of LAN-MAN bridges, but
this would increase the complexity of the problem and
currently high LAN-MAN bridge prices would force us
to use as small as possible number of them. In many
practical problems, one LAN-MAN bridge per cluster
is sufficient and the overall minimum-delay topology
is found in one phase.

A variation of the problem occurs in the case of us-
ing SMDS for interconnecting the clusters of LANs,
since SMDS will provide communications at DS1
(1.5Mbps) or DS3 (45Mbps) rates [15]. During the
design process, we have to decide which rate of ser-
vice and, in the case of DS3, which access class (4,
10, 16, 34Mbps) will be used for each cluster. A pos-
sible approach can be described as follows: At first,
we choose the lowest and the cheapest rate among all
SMDS access classes for all clusters. We find the min-
imum delay cluster topologies and calculate TiA . If it

1 OB. 1.7
2266

of
LANs

*: Global minimum in complete enumeration. All delay values are in milliseconds.

CPU Time Tmin Tmaz TLower %in Tmin Tmean
Annealing Annealing Bound Local Search 10000 samples 10000 samples PCAT / CONVEX

is acceptable, we stop; otherwise we choose the next
higher SMDS access class for clusters with unaccept-
able T$A. We continue increasing the SMDS rates
for each cluster until we are satisfied with T:A. If
increasing the rate of SMDS does not reduce TiA, we
can also increase the number of LAN-SMDS bridges
connected to a cluster as explained before.

5 Results and Discussion

5.1 Methodology for the Experiments

We performed experiments on networks with 6 , 7 , 10,
15, 20 and 30 LANs. For 6 and 7 LAN problems, we
enumerated all possible spanning tree topologies and
found the global minimum. This enabled us to com-
pare the solution of the simulated annealing directly
with the global minimum. For larger problems, we
used several different goodness measures. In order to
estimate the range for the simulated annealing results,
we ran the algorithm with different random seeds on
the same problem. We compared our solutions with
the lower bound described in Section 3.3. The simu-
lated annealing algorithm is a local search heuristic.
In order to see its advantages over a standard greedy
local search , we implemented a local search heuristic
and run it several times with different random initial
topologies. We compared the best topology found
by the local search algorithm with the simulated an-
nealing results. We also used the goodness measure
described in [ll]. In this measure, 10,000 randomfea-
sible topologies were generated. A histogram corre-
sponding to the delay of these topologies was created.
This was then compared with the simulated annealing
solutions.

Different patterns used for the traffic requirements
are as follows:

Three of the traffic matrices consist of uniformly

distributed random traffic requirements with dif-
ferent average values. These average values cor-
respond to light, medium and heavy loads. In
order to consider the unbalanced inter-LAN traf-
fic patterns, some rows and columns of the traffic
matrices have larger average values than the oth-
ers. These rows or columns might correspond to
LANs connected to file servers or host computers.

One of the traffic matrices is such that the traffic
between any two LANs decreases linearly with
the “distance” between them. For example, the
traffic requirements between LAN 1 and LAN 2
are larger than those between LAN 1 and LAN 5.
All traffic requirements have deterministic values
according to the “distance” measure.

The last traffic matrix is uniform. All traffic re-
quirements have the same deterministic value.

The mean packet length, I , is equal to 192 bytes as
measured in [19]. The average number of packets in a
batch, X is 8. The capacity of LANs is 10 Mbits/sec
which is the standard for CSMA/CD LANs. The ca-
pacity of LAN-LAN bridges is 6,000 packets/sec and
the capacity of LAN-MAN bridges are 10,000 pack-
ets/sec for these 192-byte long packets. The threshold
for T$A in the LAN-MAN problem is 20 msec.

5.2 Results for the Interconnected
LAN Problem

Table 1 summarizes the results for the interconnected
LAN problem in the case of medium load random
traffic requirements. As an example for the medium
load, the requirement matrix for the 15 LAN prob-
lem consists of uniformly distributed random require-
ments with an average of 3 batches per second. Two
rows, corresponding to LANs with file servers, have
higher requirements with average 10 batches per sec-
ond. Corresponding minimum delay topologies found

10B.1.8
2267

by the algorithm are such that average utilization of
LANs and bridges are 26% and 11%, respectively.
The minimum and maximum delay values for the sim-
ulated annealing algorithm are found by running the
algorithm with 10 different random initial topologies.
The small range of the results shows that the final
solution is not dependent on the initial topology. For
small problems, the algorithm found the global mini-
mum most of the time. It found slightly higher delay
topologies the rest of the time. Simulated anneal-
ing results are in the range of 39% to 90% of the
lower bound. As we have mentioned before, the lower
bound is not very tight. It can be observed in Table
1 that the values of the lower bound for 6 and 7 LAN
problems are 39% and 45% smaller than the global
minimum values, respectively. Therefore, we conjec-
ture that the annealing solutions are not very far from
the global minimum values.

The simulated annealing algorithm outperformed
multiple runs of the greedy local search algorithm in
all cases studied. Comparison of the simulated an-
nealing results with the best solution found by run-
ning the greedy local search algorithm with different
random initial topologies show that the simulated an-
nealing algorithm does not get stuck in a local mini-
mum.

Related columns of Table 1 show that the simu-
lated algorithm finds better topologies than the best
of 10,000 randomly generated topologies. Histograms
for the delay of these random topologies show that
most of them have significantly higher delays than
the simulated annealing solutions.

The last column in Table 1 shows the CPU times
for the simulated annealing algorithm on a PC/AT
and CONVEX 120 mini-supercomputer. For smaller
problems, the algorithm finds high quality solutions
very quickly even on a personal computer. For larger
problems, running times are still reasonable.

Clust 1
Clust 2
Clust 3
Overall

5.3 Results for the Interconnected
LAN-MAN Problem

Cluster CPU
of T,.,, Tmaz Access Time
LANs A a n e a l i q Annealing Delay PC-AT

6 8.421. 8.480 14.643 22 s -
5 7.156' 7.352 14.417 9 s
7 8.572. 8.674 15.553 36 s

67 s 18 9.4d3' 9.667 -

Table 2 shows the results for two LAN-MAN prob-
lems. The first problem has three small clusters as
in the example shown in Fig. 3. Because of the small
size of the clusters, we could enumerate all possible
topologies and found the global minimum. As shown
in the table, the simulated annealing algorithm found
the global optimum for each cluster. Since the overall
topology is a combination of these cluster topologies,
it is also globally optimal for the first problem. The
short overall running time for the first problem shows

the advantage of decomposing the problem. If we
had approached the problem as an 18 LAN problem
without decomposing it, the running time would have
been around 20 minutes instead of 67 seconds.

In the second problem, there are more clusters and
some clusters have more LANs. Although we do not
know the overall global optimum, we can still check
for the global optimum for small clusters. Goodness
measures described before show that we have good
topologies for larger clusters. Therefore, we conjec-
ture that the simulated annealing algorithm finds high
quality solutions for the LAN-MAN problem. Run-
ning times for the algorithm are short because of the
decomposition of the problem.

6 Conclusion

We have described a method based on simulated an-
nealing for finding minimum-delay topologies of inter-
connected LANs. For the cases studied, the simulated
annealing algorithm finds the best topology much
faster than complete enumeration for small problems.
For larger problems, several goodness measures show
that the algorithm finds good topologies which have
average delays in the neighborhood of the global min-
imum. We have extended the algorithm for finding
minimum delay topologies for the LAN-MAN inter-
connection problem. We have rapidly found good
topologies for the case in which a MAN is intercon-
necting several clusters of LANs.

Although we have considered IEEE 802.3-5 LANs
and spanning tree topologies, the same methodology
can be used for other LANs and general topologies.
We have focused on the minimum delay problem. It is
also possible to modify the algorithm to incorporate
many constraints, such as cost, maximum number of
bridges (i.e., hops) between any two LANs and max-
imum utilization for LANs and bridge ports.

10B.1.9
2268

References [14] B. Hajek, “Cooling Schedules for Optimal An-

A. N . Standards, “IEEE CSMA/CD Access
Met hod ,” 1985.

F. Backes, “Transparent Bridges for Interconnec-
tion of IEEE 802 LANs,” IEEE Network, pp. 5-9,
January 1988.

R. Perlman, “An Algorithm for Distributed
Computation of a Spanning Tree in an Extended
LAN,” Computer Commun. Rev., pp. 44-53,
September 1985.

C. Ersoy, S. S. Panwar, R. Dalias, and D. Segal,
“Transient Phenomena in Bridged Local Area
Networks,” in Proc. IEEE GLOBECOM, 1990.

G. M. Exley and L. F. Merakos, “Throughput-
Delay Performance of Interconnected CSMA/CD
Local Area Networks,” IEEE JSAC, pp. 1380-
1390, December 1987.

C. K. Kwok and B. Mukherjee, “On Transpar-
ent Bridging of CSMA/CD Networks,” in Proc.
IEEE GLOBECOM, pp. 185-190, 1989.

L. Merakos and H. Xie, “Interconnection of
CSMA/CD LANs via an N-port Bridge,” in
Proc. IEEE INFOCOM, pp. 28-37, 1989.

M. A. Rodrigues and V. R. Saksena, “Perfor-
mance Analysis of LAN/WAN Bridging Archi-
tecture,” IEEE JSAC, pp. 265-270, February
1991.

S. C. Liang and J . R. Yee, “Algorithms for Inter-
connecting Ethernets with Multi-Port Bridges,”.
Submitted to IEEE Tr. on Computers, Sept.
1990.

S. C. Liang and J . R. Yee, “A Gateway Alloca-
tion Algorithm for Interconnecting Existing Data
Networks,” in Proc. IEEE INFOCOM, pp. 468-
473, 1989.

P. C. Fetterolf and G. Anandalingam, “Opti-
mal Design of LAN-WAN Internetworks: An Ap-
proach Using Simulated Annealing,” in ORSA
Telecommunications Conference, 1990.

S. Gupta and K. W. Ross, “Performance Mod-
elling and Optimization of Interconnected Ether-
nets,” in Proc. IEEE INFOCOM, pp. 1353-1359,
1991.

E. Aarts and J . Korst, Simulated Annealing and
Boltzmann Machines. John Wiley & Sons, 1989.

nealing,” Mathematics of Operations Research,
vol. 13, pp. 311-329, 1988.

[15] C. F. Hemrick, R. W. Klessig,
and J . M. McRoberts, “Switched Multi-megabit
Data Service and Early Availability Via MAN
Technology,” IEEE Communications Magazine,
pp. 9-14, April 1988.

[16] N. Metropolis, A. Rosenbluth, M. Rosenbluth,
A. Teller, and E. Teller, “Equation of State Cal-
culations by Fast Computing Machines,” Journal
of Chemical Physics, pp. 1087-1092, 1953.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“Optimization by Simulated Annealing,” Sci-
ence, pp. 671-680, May 1983.

[18] R. Gusella, “A Measurement Study of Diskless
Workstation Traffic on an Ethernet,” IEEE Tr.
on Communications, pp. 1557-1568, September
1990.

[19] W. E. Leland and D. V. Wilson, “High Time-
Resolution Measurement and Analysis of LAN
Traffic: Implications for LAN Interconnection,”
in Pmc. IEEE INFOCOM, pp. 1360-1366, 1991.

[20] D. Gross and C. M. Harris, Fundementals of
Queueing Theory, 2nd ed. John Wiley, 1985.

[21] D. Bertsekas and R. Gallager, Data Networks.
Prentice-Hall, 1987.

10B. 1.10
2269

