
Security Implications of Cooperative
Communications in Wireless Networks

Salik Makda†, Ankur Choudhary�, Naveen Raman†, Thanasis Korakis†, Zhifeng Tao�, Shivendra Panwar†

† Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 11201
� Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India

� Mitsubishi Electric Research Laboratories, Cambridge, MA 02139

e-mail: smagda@poly.edu, ankurc@iitk.ac.in, nraman01@students.poly.edu, korakis@poly.edu, tao@merl.com, panwar@catt.poly.edu

Abstract—Cooperative communications is an innovative tech-
nique that is expected to change the behavior of wireless networks
in the near feature. In the MAC layer, this technique defines
new protocols by enabling additional collaboration from stations
that otherwise will not directly participate in the transmission. A
typical example of such a protocol is CoopMAC [1], a cooperative
MAC protocol that involves an intermediate station or helper
in the communication between a transmitter and a receiver.
Under this scheme, the transmitter sends its packets to the
receiver by forwarding them through the helper. In this way
the protocol takes advantage of spatial diversity and faster two-
hop transmission, significantly improving the performance of the
network. In such an environment, where the sender relies on
an intermediate helper to forward its packets to the original
destination, numerous security issues may arise. The present
security schemes need to be adapted in order to support end-
to-end security in the source-helper-destination communication
model. In this paper we discuss the potential security issues that
cooperation may raise and propose two new security schemes
to address those concerns. To evaluate the feasibility of the pro-
posed algorithms, we implement them using open source drivers
platform, which is explained in the paper in detail. Moreover,
the paper also discusses the design challenges encounterd and
share the experience and insights gained during implementation.
Our implementations of the suggested techniques allow the WEP,
WPA and WPA2 (802.11i) security protocols to successfully
operate in the new cooperative environment.

Index Terms—Wireless security, cooperative communications,
cooperative MAC protocols, open source implementation

I. INTRODUCTION

Cooperative communications consists of schemes and tech-
niques that take advantage of spatial diversity among neighbor-
ing stations in a wireless network. These schemes, by enabling
additional collaboration from stations that otherwise will not
directly participate in the transmission, achieve tremendous
improvement in the overall performance of the network. The
innovation of cooperative communications was initially con-
fined to the physical layer. However, in order for the network
to take advantage of cooperative diversity, new higher layer
protocols should be devised accordingly. Towards this end,
several MAC layer protocols have been proposed to take
advantage of the notion of cooperation. A typical example
is a protocol called CoopMAC [1], which illustrates how the
legacy IEEE 802.11 [2] can be enhanced with minimal mod-
ifications to maximize the benefits of cooperative diversity.

Under this protocol, a station that experiences a bad channel
with an intended receiver, instead of transmitting directly to
a receiver at a low transmission rate, can use an intermediate
station (usually called a helper) to forward its packets to the
receiver. Due to the fact that the helper experiences a good
channel with both stations involved in the communication,
the two hop transmission is done at high rates. Thus the
overal communication consumes significantly less time than
the original one. As a result, CoopMAC can substantially
improve the performance of the network. The interested reader
can find more information about the details of the protocol in
[1].

An implementation of the cooperative MAC scheme in the
HostAP Linux wireless driver has been discussed in [3]. Al-
though cooperative communications enables high performance
in wireless networks, its reliance on the premises that some
third-party station has to be involved in the communication
raises serious concern of potential security compromise. More
specifically, the fact that the helper receives the packet and
retransmits it to the receiver has the potential of opening holes
in the security of the network and hence must be thoroughly
investigated.

In this paper we first study the potential security issues that
may arise in such a cooperative network. We then propose
two new schemes that adapt today’s security techniques (i.e.,
WEP, WPA, WPA2-802.11i) [2] [4] to the new cooperative
environment. In order to prove the feasibility of the proposed
schemes we implemented them in MADWIFI version number
0.9.2, which is the most recent version of an open source Linux
driver platform for Atheros chipsets. In the paper, we describe
these efforts as well as the challenges we have faced and the
experience gained during this process.

The rest of the paper is organized as follows: In section
II we briefly introduce cooperative MAC protocols and enu-
merate the possible security concerns that the protocol may
raise. In section III we provide a brief overview of the 802.11i
security framework. In section IV we propose the solutions
to the security problems described earlier in section II. In
section V we discuss the details of the implementation of the
proposed security schemes. Finally, we conclude in section VI
by highlighting the experience and insights we have gained
during the implementation process.



II. SECURITY CONCERNS IN COOPERATIVE MAC
PROTOCOLS

A. CoopMAC Description

In this section we describe potential security issues that
a cooperative MAC protocol can introduce. We were ini-
tially inspired to study these issues by observing the security
implications of CoopMAC. However, most of the points in
the following discussion can apply to any cooperative MAC
protocol that uses a relay station to forward packets from a
transmitter to a receiver.

In order to make the reader familiar to CoopMAC we give
here a brief description. The interested reader can find the
details of the protocol in [1], [3].

For this description we assume stations with IEEE 802.11b
interfaces. Under the specific technology a station can transmit
using 1, 2, 5.5 and 11 Mbps, based on the channel quality. The
scheme can be adapted in any wireless technology that offers
multirate capability for packet transmission.

Consider a transmitter relaying data to a receiver (Figure
1). Due to bad channel condition, the transmitter is not able
to sustain high data rate with the receiver. Thus it transmits in
a low rate (1 Mbps in the figure). We modify this scheme by
introducing another node called helper. The helper is a station
that belongs to the same wireless network and is capable
of supporting a higher data rate with both the transmitter
and receiver. In the new scheme, the transmitter instead of
transmitting the packets directly to the receiver through a slow
hop (1Mbps), it uses cooperation and it forwards the packets
through the helper by using two fast hops: one from itself to
the helper (11 Mbps in the figure) and the second one from the
helper to the receiver (5.5 Mbps in the figure). Using this MAC
layer scheme, the network gains benefits from spacial diversity
due to the existence of the helper in the communication
between the transmitter and the receiver. Simulation results as
well as experiments in a real implementation [1], [3] show that
the proposed scheme boosts the performance of the network
up to 5 times comparing is with the existing technology of
IEEE 802.11.

B. Security Issues

The first potential security issue in the CoopMAC protocol
is that of the helper deliberately not forwarding frames re-
ceived from the source. In this case the helper could deny
service to the source by simply dropping the packets it
receives. It would then be up to the source to realize that this
helper is unresponsive and choose another helper. If another
helper does not exist, it can then transmit directly to the
destination, albeit at a lower rate. The source could detect
the responsiveness of the helper or lack thereof, by imposing
some kind of a timeout, after which if no acknowledgment
from receiver is received, it would blacklist the helper and try
to retransmit via a different helper, if available, or directly.

The second potential issue is more serious. The malicious
helper may try to deny service to the source by failing to
forward data and spoofing an ACK on behalf of the des-
tination, thereby making the source think that the data was
received. Here, we may try to combat this problem via the aid

R
11

R
2

R
5.5

R
1

Destination Source

1
1
M
b
p
s

1 M
bps

5.5 Mbps

STAh

STAs

STAdRsd

R
hd

R s
h

Fig. 1: Illustration of the Cooperative MAC Protocol.

of RTS/CTS. COOPMAC uses some variant of the RTS/CTS
scheme. This means that the destination sends the CTS, and is
aware that it is an intended recipient of a future frame. Thus, if
it does not receive this frame in the allocated NAV period, (due
to the fact that the helper did not send it and spoofed an ACK
to the source) it can send a NACK or negative acknowledgment
to the source, alerting the source that it did not receive the
frame. Alternatively, the transmitter can simply listen to the
second hop transmission, and if the correct second hop packet
is not heard, then blacklist the helper to avoid using it in the
future.

The third and the most important potential security issue is
a scenario where the helper modifies the payload and then
forwards it. The receiver will typically not come to know
of this, so it will think that it is only communicating with
the genuine sender and may end up voluntarily with replying
with privileged information, such as username and passwords.
This type of an attack is possible when changes made in the
payload will not lead to corruption of the packet, i.e. when
no wireless encryption scheme is used or if the WEP scheme
is used. If no wireless encryption scheme is employed, then
it is obvious that no mechanism exists to detect the alteration
of the payload. The modification of payload may also work
without corrupting the packet when WEP is used and there
is a single shared key [5]. Such an attack cannot be easily
avoided unless the transmitter and receiver can themselves find
that there is an unusually large delay in the received packets,
which will be due to calculations of CRC ,etc, at the helper. At
that point they may choose to use some other helper. However
if we implement CoopMAC according to the protocol which
requires the retransmission of the packet by the helper in a
SIFS interval this type of attack will not be possible as the
SIFS duration is very small to perform any kind of complex
calculations and manipulation of the packet. Finally, 802.11i
security protocols are not vulnerable to the modification of
payload unless the exact key is known to the helper.

III. AN OVERVIEW OF 802.11I

IEEE 802.11i, also known as WPA2, is an amendment
to the 802.11 standard specifying security mechanisms for
wireless networks. When Wired Equivalent Privacy (WEP)
was shown to have severe security weaknesses [5], Wi-Fi
Protected Access (WPA) was introduced as an intermediate
solution to WEP insecurities and implemented a subset of
802.11i. 802.11i makes use of the Advanced Encryption
Standard (AES) block cipher whereas WEP and WPA use

2



Fig. 2: TKIP MPDU

the RC4 stream cipher. The 802.11i architecture contains
the following components: 802.1X for authentication, Robust
Secure Network(RSN) for keeping track of associations, and
AES-based Counter Mode with Cipher Block Chaining Mes-
sage Authentication Code(CCMP) to provide confidentiality,
integrity and origin authentication.

Like WPA, 802.11i has a pre-shared key mode (PSK),
designed for home and small office networks that cannot afford
the cost and complexity of an 802.1X authentication server.
Each user must enter a passphrase to access the network. The
passphrase is typically stored on the user’s computer, so it
need only be entered once.

A. Security protocols used in 802.11i

TKIP: Temporal Key Integrity Protocol is a security
protocol used in Wi-Fi Protected Access (WPA). WPA was
introduced to patch up the deficiencies in the older Wired
Equivalent Privacy (WEP) standard, hence TKIP was designed
to replace WEP without replacing the legacy hardware. This
was necessary because the vulnerabilities of WEP had left
WiFi networks without viable link-layer security, and the
solution to this problem could not wait for the replacement
of deployed hardware. For this reason, TKIP, like WEP,
uses a key scheme based on RC4, but unlike WEP, TKIP
provides per-packet key mixing, a message integrity check and
a rekeying mechanism. TKIP ensures that every data packet is
sent with its own unique encryption key. Key mixing increases
the complexity of decoding the keys by giving the attacker
much less data than if it had been encrypted using any one
key. The message integrity check prevents forged packets from
being accepted. Under WEP it was possible to alter a packet
whose content was known even without decrypting it. Also
TKIP hashes the initialization vector (IV) values, which are
sent as plaintext, with the WPA key to form the RC4 traffic
key, addressing one of WEP’s largest security weaknesses.
WEP simply concatenated its key with the IV to form the
traffic key.
CCMP: Counter Mode with Cipher Block Chaining Mes-
sage Authentication Code Protocol is an IEEE 802.11i
encryption protocol, created to replace, together with TKIP,
an earlier, insecure WEP protocol. CCMP uses the Advanced
Encryption Standard (AES) algorithm. In the CCMP, unlike
TKIP, key management and message integrity is handled by
a single component built around AES. Data is encrypted
using Counter (CTR) mode AES. Authentication is achieved

Fig. 3: CCMP MPDU

by using a Cipher Block Chaining Message Authentication
Code (CBC-MAC). This combination of CTR and CBC-MAC
is what constitutes CCMP. CCMP encapsulations attempt to
ensure the confidentiality and integrity of the communications
channel, and to prevent replay attacks. Integrity is assured by
calculating a MIC (Message Integrity Code) sum to check if
a message is altered, protecting data from replay attacks.

IV. SECURITY IN PRESENCE OF COOPMAC

In order to implement CoopMAC we need to be able to
modify without corruption the IEEE 802.11 header of the
packet at the helper (transmitter, receiver MAC addresses)
for the helper-to-destination transmission. Thus, the current
approach to implement CoopMAC will not be compatible with
802.11i [4]. In both TKIP and AES mode, the integrity check
covers the MAC header of the packet in addition to its payload.
This check calculates a message integrity check (MIC) over the
source and destination address as well as the MSDU plaintext
data. Thus, if the helper changes anything in the header, the
integrity check at the receiver will fail and the packet will
be discarded. No ACK will be issued, so the source will try
to retransmit. After a few unsuccessful retransmissions, the
transmitter will then blacklist this helper to avoid using it in
the future which is not desirable. Hence in order to make
802.11i work in a cooperative network we need to make some
modifications to the protocol in terms of header management
so as to support its encryption and authentication mechanisms.

After a careful study of 802.11i and CoopMAC implemen-
tation, we propose two possible solutions in order to make
CoopMAC compatible with the IEEE 802.11i architecture:

A. Two header format scheme

Transmitter

• In this method before any authentication or encryption is
performed, the transmitter, if using cooperation, selects
an appropriate helper.

• The transmitter first prepares the second hop packet
which will be transmitted from the helper to the desti-
nation. This packet is the same as what a direct source to
destination transmission packet would have been, and is
encrypted and authenticated with the key shared between
the source and destination.

• Now this entire MAC level packet with its second hop
header is treated as payload and again encapsulated and

3



Fig. 4: Two header format scheme

encrypted with respect to the first hop transmission i.e.
with the helper being the destination (hence the key is
the one which is shared between the source and helper).

• This doubly encapsulated and encrypted packet is now
transmitted. Thus this mechanism secures both the
source-helper and helper-destination links.

Helper

• Identifies if the received packet is using cooperation and
is the first hop.

• If it is first hop then remove out the first hop header
and transmit the remainder of the packet to the intended
destination with no modifications at all. Here helper
cannot modify the packet payload without risking its
corruption, as it is still encrypted with the 802.11i key
shared between the source and destination.

• Else if own packet then accept.

Receiver

• Receives the packet and perform decryption.
• Calculates MIC for the packet and compares with the

original calculated MIC in the packet.
• Now as there has been no modification to the parts of

packet used in the calculation of original MIC, the packet
will successfully clear this integrity check.

• Thus the authenticity and privacy of the packet is ensured.

The two header format increases the transmission overhead
by one 802.11 header per packet. This overhead can be
removed by using the single header format.

B. Single header format scheme

Transmitter

• Before any authentication or encryption is performed, the
transmitter, if using cooperation, will select the appropri-
ate helper.

• The transmitter again first prepares the second hop packet
which will be transmitted from the helper to the desti-
nation. This packet is same as what a direct source to
destination transmission packet would have been, and is
encrypted and authenticated with the key shared between
the source and destination.

• Now the Transmitter replaces this second header with
the first hop header, and without any further encryption
or authentication transmits the packet. It can be noted
that the header is still in plaintext. Hence, right now the
packet is a corrupt packet because of its incorrect header
but the correct header is known to the helper.

Helper

Fig. 5: Single header format scheme

• Identify if the received packet is using cooperation and is
the first hop. This check should be done before the driver
attempts to decrypt the packet after its reception.

• If it is first hop then the helper simply modifies the
plaintext header with second hop source and destination
fields and transmits the packet. Now the header is the
same as that for which the source calculated the MIC.

• Else if own packet, then accept.

Receiver

• Receive the packet and perform decryption.
• Calculate MIC of the packet and compare with the

original calculated MIC in the packet.
• Now as there has been no modification to the parts

of packet used in calculation of original MIC it will
successfully clear this integrity check.

• Thus the authenticity and privacy of the packet is ensured.

V. IMPLEMENTATION OF THE SCHEMES

In order to prove the feasibility of the proposed schemes and
to test them in a real environment, we decided to implement
them. For the implementation we used a Linux platform
based on the open source MADWiFi driver [6] for Atheros
chipsets. The implementations for both the schemes follow
the respective steps outlined in the preceding section but there
were certain non trival design choices and challenges that we
had to encounter. In order to fully understand and appreciate
them, we shall first provide a brief overview of how security
is implemented in the MADWiFi driver.

A. Security implementation in the Open Source MADWiFi
Driver

Security in MADWiFi can be viewed from two perspectives:
a user’s and a developer’s perspective. As a user, we are
interested in being able to use the features of the driver to
set up a secure channel for our communication. MADWiFi
implements WEP and also the WPA and WPA2 cipher suites:
TKIP and CCMP. However, as of now, in built authenticator
and supplicant support for only WEP is provided for both
ad-hoc and infrastructure mode setups. The use of WPA and
WPA2 is more complicated. In order for these schemes to
be used in infrastructure mode, the WPA supplicant process
should run on the client and a host-ap authenticator daemon
should be set up at the AP. Using them in the ad-hoc mode
is a bit trickier though. One would have to run both the WPA
supplicant and host-ap daemon processes on the nodes; even
then multiple authentications are probably not possible.

4



Now, let us take a look at security from the more
interesting angle- that of a developer’s. The trace of a packet
as it passes through the MAC layer is of key importance
in understanding the functioning of security in a driver and
subsequently modifying it. While the packet to be sent is
being encapsulated with the MAC header, then depending on
the destination address, the corresponding unicast/multicast
key is retrieved and the header size is allocated according to
the type of the key (WEP, TKIP or CCMP). Then, depending
on the security protocol being used, a Message Integrity
Code (MIC) is added to the packet which covers the payload
as well as the source and destination addresses. There is no
MIC in the WEP protocol. Now, depending on the packet
size and fragmentation threshold, the encrypted packet is
fragmented into one or more parts, which are followed by
their encryption bits before they are finally transmitted. At
the receiver’s side, the reverse order is followed. The shared
key corresponding to the sender is retrieved and the received
packet/fragment is decrypted using it. Then the packet(s) are
defragmented followed by MIC checks depending on the
protocol being used. Finally if the packet passes the integrity
check, the MAC header is removed and the packet is pushed
to the upper layer. There is one more thing to be noted before
closing this discussion. MADWiFi (as some other drivers)
can use hardware encryption for greater efficiency. The type
of encryption is determined by a flag in the key itself, so
it can be set to enable software encryption during development.

B. Design Challenges and Decisions

As noted in the preceding section, setting up a three node
ad-hoc WPA/WPA2 security enabled network is not currently
supported by the MADWiFi driver. Thus, we decided to hack
around the available infrastructure BSS mode security features
to illustrate the implementation of our security schemes. It is
imperative to note here that the correctness of our solution does
not depend on the stations being in ad-hoc or infrastructure
BSS mode. The same implementation with a few minor
changes can be used to secure co-operative ad-hoc networks
once the full fledged security enabled MADWiFi driver is
rolled out.

Since we decided to use the infrastructure mode to imple-
ment the security schemes, the entire CoopMAC had to be
written for the infrastructure mode. However, before starting
the implementation of the protocol, a major design decision
had to be made: Who should be the AP in our sender-helper-
receiver set-up? This choice would not only determine the
form of CoopMAC implementation, but also it would had a
critical role on whether we would be able to implement the
protocol at all, a fact that we realized only later.

Initially, we were driver to this desition by some imple-
mentation limitations in MadWiFi: In the infrastructure mode,
only the AP can directly communicate to more than one node.
Thus, the helper was chosen as the AP since the helper had to
be able to communicate directly with both the sender and the
receiver. We implemented CoopMAC with this design choice
but soon we realized that this would not work. Under this

scheme, sender and receiver both being STAs did not have
a direct link between them and hence they did not have a
shared key. The sender had only one key which was for its
link to the helper (AP). Hence, it could neither perform the
two headers double encryption, which required both sender-
helper and sender-receiver shared keys, nor the single header
encryption which required the sender-receiver shared key.

So the AP clearly had to be the sender and CoopMAC
was again implemented with the new design choice. Now the
sender had both sender-helper and sender-receiver keys and
hence both the schemes could be implemented. The limitation
of absence of a direct link between helper and receiver was
overcome by altering the header of the packet transmitted by
the helper to match the one that would be transmitted if the
helper were the AP. In this way the receiver accepted the
packet thinking it was sent from the sender (AP) which is
the desired result of CoopMAC.

Under the above setup we were able to implement both
the proposed schemes and to transmit encrypted packets with
IEEE 802.11i security from the sender to the receiver through
the helper. The code for the implementation of the security
schemes can be found and downloaded from the official
CoopMAC site in [7].

C. Discussion

Of all the security issues, the most important concern with
the CoopMAC approach where we need the helper to properly
forward the packet to the destination is not that the helper
being in possession of the packet may try to decode it (this
can be even done by passive sniffing), but that it has to be
given the ability to modify the header but not the payload of
the packet. The above two implementations individually will
address all the security concerns we have in a cooperative
network due to the high robustness of 802.11i. The following
points can be observed with respect to our implementations:

• The helper cannot decrypt the packet as it does not have
the appropriate keys. 802.11i uses separate keys for each
station and no private keys are shared with the helper.

• The helper itself will be an authenticated station using
802.1X and hence will be a trusted entity. In order for a
bad helper to be a part of the network implies that first
802.1X server has to be hacked into.

• The helper may try to spoof some packets and send them
to the receiver, but as it does not have the proper keys it
will not be able to do so. Similarly any kind of session
hijacking will not be possible.

• An attack by an authenticated helper station will be
limited to denial of service. On detection of the loss of
packets, the transmitter can quickly shift to another helper
or transmit directly and blacklist the helper so as not to
use it later.

• Other than this there are no possible attacks from the
helper due to the inherent security features of 802.11i,
which takes care of the following security concerns:

– access to data (using strong encryption like AES)
– spoofing (per packet encryption/authentication)

5



– Replay (as CCMP uses a 48-bit Packet Number (PN)
to prevent replay attacks and construct a fresh nonce
for each packet. The large space of PN eliminates
any worry about PN re-usage during an association)
and

– man in the middle attacks (strong mutual authenti-
cation)

It can also be noted that our implementations does not
open up any other security holes, as the environment will be
controlled (by appropriate modification in the driver/firmware)
at the source and the helper. These do not require disclosing
of any private keys by the source, helper or receiver and
hence the data can at no point be decrypted by undesired
stations, hence maintaining the confidentiality and integrity
of the environment.

VI. CONCLUSIONS

In this paper we study the security implications that a
Cooperative MAC protocol introduces in the current WiFi
security framework. We conclude that an intermediate relay
station that forwards packets to the destination can destroy
security when WEP is used, by changing the header or
the payload of the packet. However, when WPA or WPA2
(802.11i) is used, the intermediate station can not change the
packet since now both the payload and the header are used
for the encryption of the packet. Furthermore we propose two
schemes for adjusting security (WPA or WPA2) to the new
cooperative environment. In order to show feasibility of the
proposed schemes, we implemented them using open source
drivers. From our implementation experience we obtained
insights into the security aspects on a cooperative network.

REFERENCES

[1] P. Liu, Z.Tao, and S. Panwar, “A Cooperative MAC Protocol for Wireless
Local Area Networks,” in Proceedings of IEEE ICC’05, June.

[2] “Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications,” ANSI/IEEE Std 802.11, 1999 Edition, 1999.

[3] T. Korakis, Z. Tao, S. Makda, B. Gitelman, and S. Panwar, “To Serve
is to Receive Implications of Cooperation in a Real Environment,” in
Proceedings of Networking 2007, June.

[4] “Amendment 6: Medium access control (mac) security enhancements,”
ANSI/IEEE Std 802.11, 1999 Edition, 1999.

[5] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting Mobile Communi-
cations: The Insecurity of 802.11,” in The Seventh Annual International
Conference on Mobile Computing and Networking, July.

[6] “MADWiFi: Multiband Atheros Driver for WiFi,” http://madwifi.
sourceforge.net/ .

[7] “Website for the Cooperative MAC Implementation,” http://eeweb.poly.
edu/coopmac/ .

6


