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Abstract customer which exceeds its deadline will either leave the 
queue without service or stay in the queue to get unsuc- 

We consider the problem of scheduling impatient CUS- cessful service. One application of this problem is the 
tomers in a non-preemptive G/GI/1 queue. Every CUS- transmission of time-constrained messages over a com- 
tomer has a random deadline to the beginning of its munication channel. These messages have to reach their 
service. Given the distribution of the customer dead- receivers within a certain time interval of their transmis- 
lines (rather than their exact values), a scheduling pol- sion or they are useless to the receivers and considered 
icy decides the customer service order and also which lost. Two possible scenarios are often encountered in this 
customer(s) to reject, since those whose deadlines have kind of queueing system[l]. The first is that the server 
expired do not leave the queue automatically. Our ob- of the queue is aware of each customer's deadline. The 
jective is to find an optimal policy which maximizes the messages whose delay times exceed their deadlines are 
number of customers served before their deadlines. We discarded without transmission. In the second scenario, 
show that LIFO (last-in first-out) is an optimal service the Server is only aware of the deadline distribution of 
order when the deadlines are i.i.d. random variables with the customers. Therefore some server work is useless 
a concave cumulative distribution function. After ana- because of the expiration of customers' deadlines. For 
lyzhg the rejection strategy, we claim that there is an example, there may be a delay before a dial tone in an 
optimal policy in the LIFO-TO (time-out) class, as de- overloaded call processing system. If some people start 
fined in the paper. For the M/GI/1 queue, we further dialing before a dial tone is heard, the system will not 
prove that unforced idle times are not allowed under this receive all the digits dialed. However, the call is still pro- 
optimal policy. We also show that the optimal LIFO-TO cessed and an unsuccessful call results[4]. A similar case 
policy assigns a fixed critical time (i.e., its maximum can arise in dealing with time-critical voice or video cells 
waiting time) to every customer. When the customer in an ATM (Asynchronous Transfer Mode) network. 
waiting times are unknown, we show that the optimal 
policy for a M/M/l queue the 

When the customers, deadlines are available, the 
(push- shortest time to  extinction (STE) and the shortest time 

Out) Policy, with a fixed buffer size 
Among Other 

* a rejection to extinction with inserted idle time (STEI) were proved 
to be optimal under certain conditions, These policies this may be ap- 

plied in determining scheduling and buffer management maximize the fraction of customers served within their 
policies for critical the cells in an ATM (Asynchronous respective deadlines out of an arrival stream. The re- 

sults for single server queues can be found in [7], [8] and Transfer Mode) network. 

[2]. In [13], earlier results are extended to multi-server 
queues. 

This paper is devoted to determining the optimal poli- 
Some queueing performance is significantly affected by cies when only the deadline cumulative distribution is 
the behavior of impatient customers. These customers known. Without knowing the deadline of every specific 
should be served before their respective deadlines. A customer, the control action is to decide, a t  appropri- 

ate decision instants, which customer to serve and which 'This work WM supported in part by the National Science Foun- 
dation under Nl>R-8909719, and by the New York State customer(s) to reject. The rejection is necessary since 
Center for Advanced Technology in Teleconununications (CATT), the customers whose deadlines have expired do not leave 
Polytechnic University, Brooklyn, New York. the queue automatically. Therefore a customer could be 
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either served in an order decided by a service discipline 
or discarded by a rejection scheme. From now on, we use 
the term queueing “policy” to represent the combination 
of the service discipline and rejection scheme in a queue. 
The following notation is used for some specific queueing 
policies in this paper: 

(i) FIFO(or LIFO)-BL: first-in first-out (or last-in first- 
out) service discipline; a customer arriving to see a “full” 
buffer leaves immediately (blocked). 

(ii) FIFO(or LIFO)-PO: first-in first-out (or last-in first- 
out) service discipline; a customer arriving to see a “full” 
buffer pushes out the “oldest” customer (the one with the 
longest waiting time) in the buffer and joins the queue. 

(iii) FIFO(or LIFO)-TO: first-in first-out (or last-in first- 
out) service discipline; every arriving customer joins the 
buffer but will leave at a critical time T after its arrival 
if it is still in the buffer at that time (time-out). 

More precisely, the above notation is used for queueing 
policy classes. Those classes consist of the queueing poli- 
cies with “full” buffer size (for BL and PO schemes) or 
critical time (for T O  scheme) varying with the state of 
the queue. 

Increasing interest has been shown in the performance 
evaluation of such queueing systems[4]. Optimal service 
disciplines were found in [4], [6] and [lo] for the M/G/l 
and G/G/l non-preemptive queues with different reward 
functions when no rejections are allowed. [5] and [12] dis- 
cussed the optimal control problem for a non-preemptive 
M/M/l/k overloaded queue under FIFO-BL. It is proved 
that a fixed threshold type rejection decision is optimal 
for a BL scheme. This optimal policy maximizes the re- 
ward associated with the successful service of customers. 
Other work on this issue focuses on the performance 
evaluation of various queueing policies. The TO rejec- 
tion scheme was proposed in [4] to improve the queue- 
ing performance when an appropriate constant critical 
time is assigned to every customer. Under the differ- 
ent policies, delay distributions have been compared in 
[3] for the M / M / l  non-preemptive queue after matching 
the throughput of successfully served customers. This 
throughput is also maximized with respect to critical 
time or buffer siae. 

This paper is organized as follows. Section 2 contains 
a model of the system and some general results on the 
structure of an optimal policy. This analysis leads to 
an optimal stationary policy in Section 3 when the ar- 
rival process is Poisson. Next in Section 4, we determine 
the optimal policy for a M/M/l queue under a reduced 
information structure. Our results are summarized in 
Section 5.  

2 Model and policy analysis 
We consider a simple non-preemptive G/GI/1 queue 
with either a finite or an infinite buffer as our model. 
The i-th customer Ci arrives at the instant ai and gener- 
ates a random deadline di to the beginning of its service 
with common distribution function Fd(.) on the set of 
positive real numbers. {di}gl are all independent and, 
unless noted otherwise, Fd( .) is a non-decreasing concave 
function. Customer service times are independent and 
identically distributed. The deadline of a customer may 
expire while waiting in the queue. If a customer with an 
expired deadline is served, then its service is considered 
unsuccessful. Our objective is to  choose a queueing pol- 
icy U such that the fraction of customers getting served 
before their deadlines can be maximized. 

Let G,(So) denote the process {G‘,(So),t 2 0) with 
initial state SO, where Gk(S0) is the number of customers 
served successfully under r by time t 5 0. A policy ?r 

is better than another policy r’ if CX(So) Lit GXt(So) 
for all So, where Lit is a stochastic order relation to be 
defined shortly. A policy re is optimal if 

Gz*(So) Lit Gz(S0) V r  and SO. 

Using the standard notation[9], we say that a random 
variable X is stochastically larger than another random 
variable Y, written X Y, if 

Pr(X > c) 2 Pr(Y > c) for all c. 

For random vectors, X = ( X I ,  . . . , Xk) is stochastically 
greater than = (Y1,. . . , Yk), if for all increasing func- 
tions f 

The order relations for stochastic processes can be ex- 
tended from the definitions for random vectors. We say 
that the process {X(t),t 2 0) is stochastically greater 
than the process { Y ( t ) , t  2 0}, and write X ( t )  Y ( t )  
if 

E[f (XI1 5 EV(Y)I. (1) 

(X(tl), . . ., X ( h ) )  Lat (Y(h) ,  * * .  , Y(tk) )  
for a l l t l ,  ..., tk and k. 

Back to our problem, let {bi}gl be the sequence of 
positive random variables which are used to assign ser- 
vice times to customers according to their service order. 
Then s’ = ({ai}zl,{bi}gl) is referred to  as an input 
sample. Consider an arbitrary sample path s’ applied to 
the queue starting from So. Let Wi denote the waiting 
time of customer Ci from its arrival instant to the begin- 
ning of its service under T .  Wi is infinite if Ci is rejected. 
Then 

n!(So,i) 

G‘,(So,s’) = Pr(Wi < dilT,So,s‘) 
i=l 
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where ni(So,s') is the random number of customers 
which depart from the buffer, either for service or as 
a result of a rejection, by time t. Equation (2) allows 
us to analyze the queueing performance by computing 
the sum of the successful service probabilities of all c u s  
tomers in an arbitrary sample path till time 1. Thus we 
can use the same sample path to compare the perfor- 
mances under different queueing policies. 

In the following theorem, we appropriately exchange 
the service order under one policy to improve its queue- 
ing performance[l4]. Similar results are also given in [4], 
[lo] and [6] for queues with no rejections. 

Theorem 2.1 For a non-preemptive G / G I / l  queue, i f  
the customers' deadlines are independent and identically 
distributed and Fd(.) is a concave function, there exists 
a policy with LIFO service discipline which is  at least as 
good as  any non-LIFO policy. 

Proof:  Assume an arbitrary policy x does not serve cus- 
tomers from an arbitrary sample path s' in LIFO order. 
Let C;, Cj, with waiting times W; 2 Wj, be among the 
customers available for service at time t i .  Ci gets served 
first and Cj is either served after time period r 2 0 or 
rejected at some point t;+r under a. We can construct a 
new policy a' that is identical to x except that it serves 
Cj first instead of C;. The service order of customers 
other than Ci and Cj is the same under both policies. 
Then A' is as good as A before time t i .  Since the same 
arbitrary sample path (containing C;, Cj) is scheduled 
by x and a', and customer service time is independent 
of all the other random factors including the customer 
itself, the service time of Cj under a' is the same as the 
service time of Ci under U. We have the following two 

Case 1: If Cj is rejected by x at  ti + r ,  x' will reject Ci. 
We have 

Case: 

Since wi 2 wj and Fd( .) is a non-decreasing function, 
equation (3) is not negative. a' is at least as good as a 
in this case. 
Case 2: If a chooses to serve Cj at t i  + r ,  x' chooses to 
serve C; instead at that time. Then 

G',t(So,s') - G',(So,s') 

Since r 2 0 and Wj 5 Wi, we have 

F,j(.) is a non-decreasing concave function, so equa- 
tion (4) is not negative. Therefore x' is also at least 

I as good as a in this case as well. 

Theorem 2.1 shows that there always exists a LIFO 
policy which can perform at least as well as any non- 
LIFO policy by employing a work-conserving rejection 
scheme, although this may imply some changes in the 
original scheme. Therefore there is an optimal policy 
belong to the class of policies using LIFO service disci- 
pline. 

Next we consider the rejection scheme for an optimal 
queueing policy. When the arrival rate to a queueing 
system is larger than the service rate of server, some CUS- 

tomers may never reach the server if a rejection scheme 
is not applied to the system. These customers stay in 
the buffer forever which is equivalent to being rejected. 
In general, a customer waiting in the buffer for a very 
long time will, with a probability approaching one, have 
an expired deadline. Since serving this customer could 
result in useless Cerver work, it is worth rejecting it and 
serving another customer with shorter waiting time, or 
even waiting for a new arrival and serving it. We are 
interested in finding the optimal rejection scheme under 
one of the following assumptions: 
(Al) The customer waiting times are available to the 
server. 
(A2) Only the buffer occupancy is known to the server. 
The following lemma will help us determine an optimal 
rejection scheme under either of the above two assump- 
tions. 

Lemma 2.2 For any deadline distribution Fd(.), there 
exists an optimal queueing policy which does not reject 
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a customer with given waiting t ime while another cus- 
tomer  present in  the buffer wiih a longer waiting t ime 
gets served later. 

Proof: Consider an arbitrary input sample path a. As- 
sume a customer Ci is rejected by an optimal policy A,  

while customer Cj with waiting time Wj 2 Wi is in the 
buffer. If Cj completes its service later, we can have 
another policy A’ under which Cj is rejected and Ci is 
served. R‘ is at least as good as A, because the successful 
probability is a non-increasing function of waiting time 

I (see Case 1 in proof of Theorem 2.1). 

Lemma 2.2 implies that an optimal policy A’ could 
reject all the customers with waiting time longer than 
Wi whenever Ci is rejected. Since those customers will 
be rejected eventually, they would not affect A* anyway. 
From the approach used in the proof of the above lemma, 
we also find that a policy can be improved by making it 
reject a customer with the largest waiting time instead 
of a customer with a shorter waiting time. BL schemes 
reject new arrivals when the queue is full. If we use a PO 
scheme instead of a BL scheme so that the altered policy 
pushes out the “oldest” customer instead of blocking at 
every rejection moment, we have the following corollary. 

Corollary 2.3 For a non-preemptive G/GI/ l  queue, 
there exists a policy using the PO rejection scheme which 
is  at least as good as  the one using the BL scheme. This 
is irue f o r  any  customer deadline distribution Fd(.). 

As has been proved in Theorem 2.1, an optimal policy 
can schedule customers in LIFO order. On the other 
hand, a rejection leads to the rejection of all the “older” 
customers by Lemma 2.2. These results are derived by 
improving the queueing performance under an arbitrary 
queueing policy. With assumption A l l  customer waiting 
times are known to the server. Therefore for customers 
with a concave deadline distribution, an optimal policy 
could exist in the LIFO-TO policy class. The critical 
time T of this LIFO-TO policy could potentially vary 
with the state of the queue. 

3 Optimal stationary policy for 
the M/GI/1 queue 

Now let the arrival process be Poisson with arrival rate 
A and independent of the customer service times and 
deadlines. With the memoryless property of the inter- 
arrival times, any queueing state could be treated as 
an initial state expecting the next arrival with arrival 
rate A. Consider the queue at a decision instant t 2 0, 
whenever a service completion occurs or an arrival joins 
an empty queue, the server is always idle at this in- 
stant. Let S(2) = ( w l ( t ) ,  w2(t) ,  . . . , w r ( t ) )  denote the 

complete state of an M/GI/l non-preemptive queue at 
t 2 to when there are k customers in the buffer. These 
customers are labeled as c l ( t ) ,  c2 ( t ) ,  . . . , c b ( t )  and cus- 
tomer c i ( t )  having been in the buffer for w i ( t )  time units, 
wi(t)  5 wi+l( t ) ,  i 2 1. Note that the customer corre- 
sponding to  c i ( t )  can vary with the time, as well its cur- 
rent waiting time w i ( t ) ,  in contrast to Ci and Wi defined 
earlier. When there is no confusion, we will omit the ar- 
gument t in c i ( t )  and w i ( t )  for notational convenience. 
We define the set of feasible states to be 

empty buffer; 

otherwise. 

It is also useful to assign order to the waiting rooms in the’ 
buffer, which starts from the first waiting room occupied 
by the customer with the shortest waiting time. Then 
c1 is the customer in that first room at time 1 .  

We are going to find an optimal stationary policy for 
this M/GI/1 queue under assumption Al. For an opti- 
mal LIFO-TO policy, its rejection scheme can be emu- 
lated by the following “delayed” scheme which makes use 
of Lemma 2.2. Let a rejected customer leave the buffer 
either when it reaches the server in LIFO order or when 
another customer at the first waiting room is rejected. 
In other words, we can tag every rejected customer and 
keep it in the buffer until either of the rejection moments 
described above. With LIFO order, a “delayed” rejec- 
tion always throws away the customer with the shortest 
waiting time and thus results in an empty queue. 

While a customer c1 reaches server under LIFO order, 
an optimal policy could either serve or reject it. I t  is also 
possible to insert an unforced idle period to the service 
sequence. This means that c1 is held in the buffer while 
the server is kept idle until a fresh arrival, at which point 
either the new customer is served or another unforced 
idle time period may commence. As is proved in the 
next lemma, there is no advantage in allowing unforced 
idle times. 

Lemma 3.1 For a non-preemptive M/GI/l queue, an 
optimal stationary LIFO-TO queueing policy will not al- 
low unforced idle t imes.  

The proof is in the Appendix. 
From the above lemma, we conclude that an opti- 

mal queueing policy belongs to LIFO-TO class without 
unforced idle periods. Under this optimal policy, the 
server treats customers in LIFO order, either serves a 
customer or rejects it. We further define a decision func- 
tion ur : S(r )  H {0,1} associated with a stationary 
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policy A at decision instant r as follows: 

A rejects c l ;  {: A serves c1. 
(6) %[S(r)l= 

Because a rejection can bring the state equivalent to 
the null set (an empty queue), for any stationary policy 
A and T 2 0, we should have 

0 when G , P ( { @ } )  La: G , ( S ( r ) ) ;  
(7) { 1 when G=*(S(T))  Lit G , P ( { @ } ) .  

U,*[S(T)l = 

Theorem 3.2 Consider  a non-preemptive M / G I / l  que- 
ue under assumption Al. If the customers’ deadlines are 
independent and identically distributed with a concave 
function Fd(.), there ezists an optimal stationary policy 
in LIFO-TO class with a j i t ed  critical t ime T .  Unforced 
idle t ime i s  noi allowed under this policy. 

Proof: From Lemma 2.2, an optimal policy could be 
LIFO-TO type. Lemma 3.1 shows that unforced idle 
times provide no advantage. Here we are going to prove 
that a fixed critical time T is optimal. Let wil be the 
smallest waiting time for which u,p[S(ti)] = 0 with 
S(t i )  = ( W i l  , w i z , . .  .) at  t i .  Suppose T is not fixed, then 
there exists a state S ( t j )  = ( w j l , .  . . , w j m ,  wj(m+l) ,  . . .) 
with wjl 2 will and ~ = . [ S ( t j ) ]  = 1 at t j .  If c j m ,  m 2 1, 
is served at time t j  + U ,  and c , (m+l ) ,  . . . are rejected later, 
then 

with S(tj  + U )  = (wjm + U ,  wj(m+l) + U , .  . .). At the 
next decision instant, A* will either reject c j ( m + l ) ,  . . . if 
no customer arrives during the service to Cjm, or serve 
the latest arrival. 

Assume another stationary policy A‘ is identical to A* 

except that it serves cil and rejects C i 2 , .  . . at t i .  Hence 
from equation (7) 

G i * ( s ( t j  + U ) )  La: G:*({@}) (8) 

G : * ( { @ } )  >at G L i ( s ( t i ) ) -  (9) 
In a manner similar to the policy A* after time t j  + 
U ,  d will next either reject c2, ... or serve the latest 
arrival at  its next decision instant. Let us consider an 
increasing function f (G‘ , (So) )  = @*(So) as the one used 
in inequality (1). We have 

= E [ G : , ( S ( t i ) , Z ) ]  - E [ G : . ( S ( t j  + U ) , ; ) ]  

= Fd(wjm + U )  - Fd(wi l ) ,  (10) 
since only the successful service probabilities of c i l ,  c jm 
are different. Consider 

(11) W i l  5 W j l  < W j m  + U  

and F d ( . )  is non-decreasing in waiting time, so equa- 
tion (10) is non-negative. Then from inequality (8), 

Any contradiction between inequalities (9) and (12) 
shows that cjm should not be served under A* .  To avoid 
this contradiction, the “2” symbols in inequality (12) 
actually should be ‘I=” symbols, which matches with a 
change from “2,:” to in inequality (9). Since in- 
equality (12) will still be true if any other increasing 
function of G is chosen for equation (lo), we have 

G=*(s(tj  + U ) )  = a t  G r * ( { @ } ) *  

Then from equation (7), cjm should be rejected after 

By an argument similar to the one shown above for 
c j m ,  c , ( ~ - I )  and then c j ( m - 2 ) ,  . . . , cj l  should not be 
served either. As a consequence, the optimal policy x* 
should not serve any customers with waiting time longer 
than wil.  This implies that the critical time T is a con- 
stant. I 

t j  + U .  

Note that the above proof does not depend on the 
concavity of Fd(.). This leads to the following corollary. 

Corollary 3.3 For any customer deadline distribution 
F d ( . ) ,  an optimal stationary LIFO-TO policy with no un- 
forced idle t imes for an M / G I / l  non-preemptive queue 
has a fixed critical t ime  T .  

When A ,  Fd(.) and the service time distribution are 
given, the fixed critical time T in an optimal LIFO-TO 
policy can be determined. Therefore a customer with 
waiting time exceeding T can be rejected immediately. 

4 The M/M/ l  queue with a re- 
duced information structure 

Buffer size is the only information that can be used by 
a queueing policy under assumption A2. When the cus- 
tomer service times are exponentially distributed, we can 
extend the LIFO-TO results in Section 2 and Section 3 
to LIFO-PO policies. Since we can compare the cus- 
tomer waiting times by their arrival order, Theorem 2.1, 
Lemma 2.2 and Lemma 3.1 still hold here. Thus LIFO 
is still the service order for customers and unforced idle 
times are not allowed. A T O  rejection scheme cannot be 
implemented because the customer waiting times are un- 
known. Under a PO scheme, a customer reaching some 
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"end" position of a queue may be pushed out by an ar- 
rival. This is reasonable since the rejected customer is 
expected to have the longest waiting time. 

To emulate a policy under assumption A2 by the "de- 
layed" rejection scheme, we may again tag the rejected 
customers. The tagged customers leave the buffer only 
at the moment when a customer in the first waiting room 
is rejected. We define a customer's push-up index T,J as 
follows in order to estimate its waiting time at the de- 
cision instants. We assign a push-up index T,J = 0 to 
every arriving customer. If a customer visits the k-th 
waiting room but no room beyond it, then T,J = k .  Let 
W k  denote the random waiting time of a customer with 
push-up index k, k = 0,1,. . ., from the time of its ar- 
rival to the time it reaches the server just before service 
or rejection. Then WO = 0 since an arrival joining an 
empty queue could get served immediately. We have the 
following stochastic order relations[9][11] for W'J's. 

Lemma 4.1 For ihe M / M / l  queue, Wq has the stocha- 
stic monotonicity property with respect t o  the push-up 
index 7, i .e.  WO 5.t W' . . . Ist Wk-' sat W ' .  ... 
Proof: Since a rejection results in an empty queue, the 
queueing system starts with the initial null set state after 
every rejection. Thus our M/M/l model still gives a 
Markov process between any two rejections. We use the 
induction method to prove the above lemma as follows. 
Basic Step: When T,J = 1, W' is the residual service 
time conditionally distributed on the event that the on- 
going service completes before the next arrival instant. 
That is 

A 

Pr(W' 5 t )  
Pr ( Residual service time 5 t I Ongoing service = 

completes before next arrival ) 
- - 1 - e-(x+a)t  t >_ 0. 

Because of the memoryless property of Markov process 
and the LIFO customer service order, W' is independent 
of the service time received by the customer present in 
the server (or Cl's arrival instant) and the buffer oc- 
cupancy at Cl's arrival instant. Obviously, we have 

Inductive Step: Now assume W' zst W'-', k > 1, 
and W k  is independent of C"S arrival instant and the 
buffer occupancy at that moment. For a customer C't', 
its waiting time Wkt' can be decomposed into a se- 
quence of random intervals as follows. Since its push-up 
index k + 1 > 1, C'+' should wait for a new customer 
pushing it up to the second waiting room after its ar- 
rival and visit the (k + 1)-th room at least once. On the 
other hand, any customer arriving during Ck+"s waiting 
period can at  most reach up to the k-th waiting room, 

w' Lst WO = 0 .  

and it would be scheduled before Ckt' under LIFO ser- 
vice order. Let Q denote the first time period that Ckt' 
spends in the first room after its arrival and before it 
is pushed up by a new arrival. Then Q is the interar- 
rival period conditionally distributed on the event that 
the new arrival comes before the completion of ongoing 
service. We have 

Pr(a 5 t )  
Pr ( Interarrival time 5 t I Next arrival comes = 

before ongoing service completion ) 
- - 1 - ,-@+PP 12 0 .  

a has the same exponential distribution function as W'.  
Let W(k+l)i denote the i-th sub-waiting period, which 
starts at an arrival instant when C'+' is pushed up to 
the second room by a new arrival for the i-th time, and 
ends at the moment when that new customer begins its 
service. Under LIFO service order, w(k+l)i is equal to 
the waiting time of that new customer to the beginning 
of its service. This waiting period can be estimated by 
the new customer's push-up index, which is less than 
k + 1 since the new customer can at most reach up to 
the k-th waiting room. Thus w(k+l)i take values from 
{ W 1 ,  W 2 , .  . . , W k } .  Between any two sub-waiting peri- 
ods, Ck+' could stay in the first room for Q time units 
as if it just joined buffer. Assume during the n-th sub- 
waiting period, n 2 1, Ckt' reaches the ( I C  + 1)-th wait- 
ing room for its last time, then W(k+l)n = w'. After 
this last sub-waiting period, we define a residual wait- 
ing period of Ck+', AWkt'. AW't' only can take its 
value from {W' ,  W 2 , .  . . , W'} because Ckt' visits the 
(k + 1)-th room for the last time during the n-th sub- 
waiting period. 

In Figure 1, we give a sample waiting time structure 
of C4 as an example. During W 4 ,  there are three sub- 
waiting periods: w51 = W 3 ,  W52 = W' and W53 = W 3 .  
During W53, C4 is pushed up from the first waiting room 
to the 4-th room for the second and also the last time. 
After that period, C4 is pushed up and down several 
times and AW5 = W 3 .  

Now we have 

wktl 
n 

= x ( a  W(kt1)i) AW"' 
i= 1 

n-1 

= a+ W' + x(Q w(k+l)i) + AWL". (13) 
i=  1 

Again from memoryless property of Markov process, n is 
independent of Ck+l's arrival instant and the buffer oc- 
cupancy at  that moment. Therefore from equation (13), 
Wkt' is also independent of above random factors. Since 
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Occupied Room No. 

t 

I* 

Figure 1: An example of the Structure W4 
I "  

Wk+' is the summation of non-negative random vari- 
ables a, Wk and AWk+', from equation (13) we have 

wk > c 3 wk+' > c ,  

Pr(Wk > c) 5 Pr(WC+' > c ) ,  

and then 

which follows Wk Srt Wk+'. I 

Now the queueing state becomes 

1 empty buffer; 

otherwise, 

where wqi is the waiting time of ci, with push-up in- 
dex vi, from its arrival instant to t .  At a time m e  
ment 1 ,  are positive integers increasing in i and 
vi 2 i for all i .  The discontinuity of push-up indices in- 
dicates that the corresponding customer(s) was pushed 
away from the server by new arrival(s). The customer 
waiting times at  the different times can be stochastically 
ordered by their push-up indices (Lemma 4.1). Using 
the coupling method[9][11], a set of random variables, 
w'q1 - C w'qa.. . - < w'qi. .  . - C w'9k, can be used to analyze 
the queueing system, where w'qi has the same distribu- 
tion as wqi for all i .  By using { W " J ~ } ! = ~  as customer 
waiting times, we can show, in a manner similar to the 
one used in Theorem 3.2, that LIFO-PO with fixed buffer 
size is optimal. 

Theorem 4.2 Consider a non-preemptive M / M / l  que- 
ue under assumption A2. If the customers' deadlines 

are independent and identically distributed with a con- 
cave function Fd(.), there exists an optimal stationary 
policy in LIFO-PO class with a fixed buffer size used as 
a rejection threshold. Unforced idle t imes  are not allowed 
under this policy. 

Proof: Since the approach is similar to the one in proof of 
Theorem 3.2, we only point out the essential differences 
here. Now the queueing state consists of a set of waiting 
times {wq#}f=' .  The TO scheme becomes a rejection 
scheme which pushes out a set of customers according 
to their push-up indices. We need to prove that this 
rejection scheme is a PO scheme with a fixed threshold 
on the push-up index to reject customers. 

Assume that u T * [ S ( t i ) ]  = 0 with S ( t i )  = ( d e l ,  

w " * l , .  . .) under an optimal policy A*,  and the buffer size 
is not fixed. Then there exist a state S( t j )  = ( ~ 7 ~ 1 , .  . . , 
w V J ~ ,  w q ~ ( m + l ) ,  . . .) with v j 1  2 ?il, i.e. wq1l ?st wqil, 

and un.[S(t ,)]  = 1. Suppose e", m 2 1, is served at 
t j  + U and d(mt'), . . . are rejected later, then A* will ei- 
ther reject d(mt'), . . . or serve the latest arrival arriving 
during the service to dm at the next decision instant. 

Let A' be identical to A* except that it serves cil and 
rejects c i 2 , .  . . at t i .  In a manner similar to policy A* after 
time t j+a ,  at its next decision instant A' will either make 
a rejection leading to an empty queue, or serve the latest 
arrival. By using the monotonicity property of Wq and 
the coupling method, we have 

wq" Wq3' <rt Wqjm + 6. (14) 

(15) 

Then w'qb1 and ~ 4 3 ~  can be chosen such that 

w'q*1 < w'r )Jm + 6. - 
instead of wqal and w ' J J ~  in the analysis. 

As has been shown in proof of Theorem 3.2, inequali- 
ties (8) and (9) also hold here. When w q ~ l  and wq~m are 
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used instead of wil and wjm, equation (10) is still non- 
negative because of inequality (15). This again results 
in a contradiction in inequality(l2) with inequality (9). 

By an argument similar to the one shown above for 
c“, d(“‘-l) and then d(m-2), ... , & ,  should not be 
served either. Since A* could not serve any customers 
with waiting time longer than w’qi1 wqil, the TO 
scheme should reject all the customer with push-up in- 
dex larger than or equal to qil. This leads to a PO 
scheme with a fixed threshold. I 

The concavity of F d ( . )  is not used in the above proof. 
This leads to the following corollary. 

Otherwise all the new arrivals do get served in a time 
period of 0 time units, and then c1 reaches the server 
again at t o  + ( U  + 0) = t o  + 6 with c2,. . . , ck behind it. 
The queueing state becomes S(t0 + 6) = (w1 + 6, w2 + 
6,. . . , wt + a), which is the state S(t0) time-shifted by 
6. At t o  + 6, A* can decide to serve c1 or reject it, or 
even insert another unforced idle time. We first show by 
contradiction that serving c1 is not an optimal decision. 

Let {Cs }  denote the set of customers {cl, c2, .  . . , ck}, 
which are either served or rejected eventually under A* . 
Assume q E {Cg}, 0 5 i 5 k, leaves the buffer ri time 
units after t o  + 6 when the customer deadlines are set to 
the beginning of their services. With LIFO service order, 

5 Summary 
We discussed the optimality of queueing policies for non- 
preemptive queues with impatient customers. The dead- 
lines of these customers are set to the beginnings of their 
services, and only the customer deadline distribution is 
given. In general, PO is at least as good as BL when 
the service discipline is specified. For example, under 
a FIFO discipline, it is better to push out a customer 
at the head of queue rather block a new arrival. If the 
deadline distribution is a concave function, an optimal 
policy for the G/GI/1 queue exists in LIFO-TO policy 
class. With a Poisson arrival process, this optimal pol- 
icy does not insert unforced idle times, and it’s critical 
time is a fixed constant for a given set of system parame- 
ters. Furthermore, if the customer waiting times are not 
available, an optimal policy for the M / M / l  queue is in 
LIFO-PO class with a fixed finite buffer size. Though not 
presented here, these results can be extended when the 
customer deadlines are set to the ends of their services 
and also to some equivalent multi-server queues[l6]. 

Appendix 
Proof of Lemma 9.1: Suppose A* is an optimal LIFO- 
TO policy for which the hypothesis is not satisfied. If 
an unforced idle period of U time units is inserted in the 
service sequence from an arbitrary sample path at state 
S(t0) = (wl ,wz, .  . . , w t ) ,  then 

G,-(S(to)) 2gt G,(S(to)) V A  and t 2 t o .  (16) 

Under LIFO service order, all new arrivals are sched- 
uled before C ~ , C B , .  . . , ct. If any one of them is rejected, 
c 1 , q  ,..., ct would be rejected anyway (Lemma 2.2). 

cause the interarrival time is memoryless and the service 
times are independent and identically distributed, we can 
couple the sample path after t o  + 6 under A* with that 
after t o  under A’. Suppose T’ schedules new arrivals after 
t o  in the same manner as A* schedules new arrivals after 
t0+6 .  Then the same set of customers in {Cb} are sched- 
uled under both A’ and A * ,  but A’ schedules customers in 
{C,} when they have shorter waiting times. To compare 
the queueing performances stochastically, let us choose 
an increasing function f (Gi(S0))  = GL(S0) as the one 
used in inequality (1) when k = 1. From equation (2) 
and inequality (16) we have 

where ti is the service beginning instant of the corre- 
sponding customer Ci or Ci. 

We further construct another policy A” which is iden- 
tical to A* in interval [to,&, + 6). At t o  + 6, A” inserts 
another unforced idle period ut’, and then it behaves 
just like A* after the insertion of the idle time U at t o .  
Note that A’’ can make all the decisions after t o  + 6 as if 
the system with initial state S(t0) was governed by A * .  
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Based on the same reasons as shown above for T* and d, 
we also can couple the sample path under 7r” after t o  + 6 
with that under T* after t o .  As customers in {C,} could 
reach the server under T* a t  t o  + 6, they are scheduled 
by dt at to+6+6” under the coupled sample path. Here 
6” and 6 are identically distributed, but 6” is indepen- 
dent of 6 because of the memoryless property. Thus we 
can have an expression similar to expression (17) for all 
t 2 t o  + 6 88 follows: 

= E[ C [Pr(wi + 6 + 6” + Ti < dj 
e i €  t C.1 , t i€ [ to+JJl  

(TI’, S(to + a), S) 
- Pr(wi + 6 + Ti < dilA*, S(to + a), E)] 

[Pr(Wi < diJd’, S(to + 6), 5) + 
Cif‘{ Cm} #t i  E [to+J,t] 

-Pr(Wi < dil7r*,S(to+6),1)]]. (18) 

The second term in expression (17) and (18) can be 
rewritten as 

E[ [pr(wi < diIr1,So,s) 
Ci f‘tc,) ,t i € [ O , t ]  

-pr (wi  < ~~IT~,SO,~)I], (19) 

where SO is the initial state for sample path 2, and T I ,  7r2 

are the two corresponding policies. Equation (19) is the 
performance difference between T I  and 7r2 awarded by 
the services to new arrivals ( 4  {Cb}) after 0. With the 
memoryless interarrival times and the couplings of sam- 
ple path and policy, expression (19) and the second term 
in expressions (17) and (18) are actually equal. The rest 
of the terms in expressions (17) and (18) have the form 

E[ [Pr(wj + u + 6  < diI*1,so,;) 
C i €  ~c . ) , t i€ [o , t l  

1 -Pr(wi + U  < djI~2,So~g)J  

= E[ c [( 1 - Fd(wi + v + 6)) 
eiE { C.},ti€[O,t] 

(20) 1 -( 1 - Fd(wi + .))I 
with v 2 0 as the time shift period and SO as the initial 
state. Since 1- Fd( .) is a convex non-increasing function, 

equation (20) is non-positive and non-decreasing in U. 
Hence 

E p s 6 ( S ( t o  + 6))] - E[C:t6(S(to + 6))] 

2 0  vt  2 t o .  (21) 

Equation (21) shows that A” could be better than U* 
for the increasing function f(G‘,(So)) = G‘,(So) when 
t 2 t o  + 6. This contradicts inequality (16). 

We have just shown that c1 will not be served at  t o +  6. 
Thus either it is rejected or another unforced idle period 
is inserted at this instant. If there is an insertion at t o + & ,  
then based on the same reasoning as above, an unforced 
idle period will always be inserted whenever c1 reaches 
the server. Thus c1 will never be served. As a result, an 
optimal policy actually would not lose anything by re- 
jecting c1, c2, . . . , c k ,  which leads to a forced idle period 
at  time t o .  I 
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