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Abstract

In this paper we study the problem of optimal
buffer space priority control in an ATM network node.
The buffer of a transmission link is shared among the
cells of several traffic classes waiting for transmission
through the link. When the number of cells to be
stored in the buffer exceeds the available buffer space,
certain cells have to be dropped. Different traffic
classes have different sensitivities to cell losses. By
appropriately selecting the classes of cells which are
dropped 1in case of overflow, we can have the more sen-
sitive classes suffer smaller cell losses. Arriving cells
might be blocked from entering the system or they
inay be dropped after they are already in the buffer.
Depending on the control that we have on the system,
three classes of policies are distinguished. In each one,
policies that schedule the buffer allocation in some op-
timal manner are identified.

1. Introduction

One of the main problems arising in the area of high
speed communication networks is the design of control
algorithms for the efficient sharing of the buffer space
in an ATM node. Cells of different traffic types arrive
at the node and are stored in a buffer until their trans-
nussion. Cells of different types may be generated by
a leaky bucket policing function which marks exces-
sive traffic cells at the source network interface or by
an encoding scheme which creates cells with different
priorities[6]. When a cell finds the buffer full upon
arrival, it may be discarded before admission into the
system. The cell loss due to buffer overflow incurs a
degradation in the overall system performance which
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is highly dependent on the type of the discarded cells.
Certain traffic types are more sensitive to potential cell
losses than others. We can reduce the probability of
discarding a loss-sensitive cell due to buffer overflow
if we block the admission of less loss sensitive cells.
We may also consider expelling less loss sensitive cells
from the buffer. In this paper we study how we can
do this in an optimal manner.

We consider a single outgoing link and the corre-
sponding dedicated buffer in a network node. The
system is modeled by a single server queue(Figure 1).
The queue has a buffer that can store B cells; this is
called the main buffer in the following. Time is slotted
and the transmission of a cell takes one slot. During
one slot at most By cells may arrive to the system
and they are placed in the temporary buffer which has
length By. These cells may belong to different traffic
types. This assumption is consistent with the struc-
ture of knockout-type ATM switches[9] or a switch
with output queueing. At the end of each slot the
cells from the temporary buffer are either placed in
the main buffer or dropped from the system. Depend-
ing on the available control we have over the dropping
of cells from the temporary or the main buffer and
over the placement of the cells in the main buffer, we
will distinguish three classes of policies. In all the
policies considered it is assumed that the cells which
enter the main buffer in every slot should join the end
of the queue and rearrangement of cells is not allowed.
Hence the FIFO discipline is preserved and the cells
are delivered in order. This property is essential in
virtual circuit connections.

The first class is that of discarding policies. A dis-
carding policy cannot modify the state of the cells
which are already in the main buffer. It can only
control the admission of the cells from the temporary
buffer, by blocking some if necessary, and the place-
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Figure 1: The system model

ment of the admitted cells in the main buffer. We
show that the optimal discarding policy is of “multi-
threshold type.” That is, for each priority class there
is a threshold, and if the number of cells in the main
buffer exceeds that threshold, the cells of that class
are blocked from admission. The policy is optimal in
the sense that it minimizes the long run average block-
ing cost where a cost is associated with each cell that
reflects the loss sensitivity of its class.

The second class of policies considered are the
pushout policies. A pushout policy is allowed to ex-
pel cells from the main buffer in order to make space
for cells in the temporary buffer which cannot enter
the main buffer because it is full. A cell from the
temporary buffer cannot be blocked from admission
to the main buffer if there is space in the main buffer.
We obtain the optimal pushout policy, which we call
the squeeze-out policy, in a system with two priority
. classes. That policy places the cells in the main buffer,
high priority first. If the buffer is full and there are
cells in the temporary buffer, then the second priority
cells are pushed out of the main buffer starting from
those closest to the head of the queue. Notice that
second priority cells are dropped to make space for
other second priority cells that are appended to the
end of the queue. The squeeze-out policy minimizes
the blocking probability of the high priority(loss sen-
sitive) class among all pushout policies.

The third class of policies considered are the ez-
pelling policies. Expelling policies are allowed to dis-
card cells from the main buffer or block cells in the
temporary buffer from admission into the main buffer
irrespective of the system state. Properties of the op-
timal expelling policy are obtained that narrow down
the set of candidate policies considerably in a system
with two classes. More specifically we show that the
cells are placed in the main buffer high priority first
and low priority cells are pushed out, starting from the
head of the queue, if there is no space like in the case

of the squeeze-out policy. In addition to that, the op-
timal expelling policy may drop low priority cells even
if the main buffer is not full but only if the low priority
cell(s) dropped is(are) at the head of the queue.

Clearly, an expelling policy has more control over
the system than discarding and pushout policies. In
other words the class of expelling policies contains the
discarding and pushout policies as subclasses. Policies
of different classes have different degrees of implemen-
tation difficulty. For one approach that allows for the
implementation of some of the policies considered in
this paper, see [7].

The problem of sharing the buffer space among sev-
eral competing traffic streams has attracted consid-
erable attention in the past. Several strategies for
buffer sharing, called space priority access methods,
have been proposed and analyzed. Petr and Frost in
[4] distinguish several classes of buffer sharing policies
based on the time instances at which control actions
can be taken and on the groups of cells that can be
discarded. The three classes of policies studied here
fall within that framework. Discarding type policies
have been studied by Petr and Frost in [3, 5]. In [3] the
problem of minimizing the average discarding cost has
been considered in a system with two priority classes
and one buffer space. In [5] the problem of optimizing
the discarding cost under constraints on the losses of
each class is considered. Here we consider a system
with multiple traffic classes and buffers of arbitrary
length and we optimize over all discarding policies.

The pushout scheme is another buffer sharing strat-
egy that has been studied extensively in the past. An
important component of a pushout strategy is to de-
cide which cell to push out of the buffer in order to
make space for an incoming cell. Kroner and Kroner
et alhave analyzed the performance of several pushout
schemes in [1, 2] and obtained the cell loss probabilities
of the different traffic classes. In our work we identify
two important properties of the optimal pushout pol-
icy. It is better to push out the oldest low priority
cell from the buffer and it is better to push out a low
priority cell from the buffer in order to make space
for another cell, irrespective of its priority. These two
properties uniquely characterize the optimal pushout
policy, called the squeeze-out policy, as we show in sec-
tion 3.1. The class of expelling policies has been iden-
tified in [4] but they haven’t been analyzed. Some re-
lated work in eXponential queueing systems was done
in the past by Lippman in [10].

The paper is organized as follows. In section 2 the
discarding policies are described. The pushout and
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the expelling classes of policies are described in subsec-
tions 3.1 and 3.2 respectively. For the sake of brevity,
proofs of theorems have not been presented here. The
proofs are availablein [11, 12, 13]. In section 4 we dis-
cuss some extensions to our work and open problems.
In section 5 numerical results are reported.

2. Discarding Policies

The cells are classified into L priority classes. The
high priority classes are more sensitive to cell losses.
Without loss of generality we assume that the prior-
ity of class { is higher than the priority of class I + 1.
The priority of a class is reflected by the cost that is
incurred by the blocking of a cell of that class. As
we mentioned earlier at most By cells of all classes
arrive into the system during every slot and they re-
side in the temporary buffer. By the end of each slot
a decision is taken regarding which cells will be ad-
mitted in the system and where they are going to be
placed in the buffer. The rest of the cells are dis-
carded. We denote by XM(t) the class of the cell
residing at the main buffer position ¢, 1 = 1,.., B by
the end of slot ¢; XM (t) = 0 if position i is empty
at this time. We denote by X7 (t) the class of the
cell residing at position 7 of the temporary buffer
i = ..., Bp; XT(t) = 0 if this position is empty at
this time. The vectors XM () = (XM (t):i=1,.., B),
X"(t) = (XT(t) : i = 1,.., By), represent the main
and temporary buffer occupancies at the end of slot
1. Without loss of generality we may assume that in
the temporary buffer, the cells are stored in decreasing
priority order and in contiguous buffer spaces; that is,
for XT(t) > 0,1 > 1, we have 0 < X[ ,(¢) < XT(¢).
The temporary buffer at the end of slot ¢ contains
cells that arrived during slot ¢t only. We assume in-
dependent identically distributed arrivals from slot to
slot. The vector X(t) = (XM(¢), X7 (¢)) is a natural
state variable and we use the notation {X(t), t > 0}
for the stochastic process that describes the evolu-
tion of the system. The state space of that process
is X' = AM x X7 where XM = {0,1,..,L}F and
AT = {0,1,..,L}BT are the spaces where the vectors
XM(t) and XT(¢) lie respectively.

All the cells in the temporary buffer, by the end
of each slot t, are either admitted in the system and
placed in the main buffer or rejected. We control the
admission of cells in the main buffer. The control ac-
tions taken by the end of slot ¢ are represented by the
admassion variables A;(t) € {0,1,..,B},i =1,.,Br
as follows. We have A;(t) = 0 if either position i of
the temporary buffer is empty or the cell stored in
that position is blocked from admission into the sys-

tem; we have A;(¢) = j if the cell residing in position
i of the temporary buffer is placed in position j of the
buffer. The vector A(t) = (Ai(t) : i = 1,.,Br) is
called the admission vector at time ¢ in the following.
Let A = {0,.., B}PT be the space where it lies; this
is called the action space in the following. We assume
that the cells of the temporary buffer which are ad-
mitted in the main buffer are placed in consecutive
positions at the end of the existing queue. Let S(x)
be the set of all admission vectors which satisfy the
above assumption when the system is in state x.

At each slot t exactly one cell is transmitted. The
cells in the main buffer are served in a FIFO manner.

An admission policy is any rule for selecting the
admission variables at every time ¢ > 0. This deci-
sion is made on the basis of the past system states
{X(s), t > s > 0} and past decisions. Let G be the
class of all admission policies such that the admission
vector A(t) belongs to the set S(X(t)) at all ¢.

When a cell of class ! is dropped from the system
then a cost ¢; is incurred. We assume that the classes
are indexed in decreasing priority, that is ¢ > ¢141,
{=1,.,L—-1. By convention we set cp = 0. The total
cost incurred when the system is in state x and the
admission actions that correspond to vector a € S(x)
are taken is

Br
c(x,a)d=efz 1{a; = 0}c,7, x€ X, a€ S(x). (1)

i=1

The blocking cost incurred at time t is C(t) =
¢(X(t), A(t)). Our objective is to minimize the av-
erage blocking cost. The long run average cost associ-
ated with a policy g € G is defined by

T-1

7,00 imsup E;'(%[Z C), xex (2
T—oo t=0

where Eg,[] denotes the expectation with respect to
the probability measure induced by the policy ¢ on the
state process starting in state y. An admission policy
gp is said to be average cost optimal discarding policy
if it minimizes (2) within G, i.e., if

Jip (%) < Jy(x), x€X

for any other policy ¢ € G. Under our assumptions
about the arrival statistics, the optimization problem
associated with (2) falls within the family of discrete
time Markov Decision Processes (MDP’s). Since the
state space is finite , it is well known that an opti-
mal policy exists and it can be taken in the class of
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Markov stationary policies [14]. The following theo-
rem provides a structural characterization of the opti-
mal policy.

Theorem 1: There exists an average cost optimal
discarding policy gp, of the following form. There are
thresholds t; > t3 > --- > ¢, such that a cell of class
J in position k of the temporary buffer is accepted if
and only if

t>i+k
where i is the length of the main buffer.

The proof of the above theorem can be found in [11,
12, 13].
3. Cell expelling policies

In the following two sections we study the pushout
and expelling class of policies. The main difference be-
tween these policies and the discarding policies is that
cells in the main buffer can be dropped (expelled) from
the system under the pushout and expelling policies.
"The pushout policies, where a cell can be expelled or
discarded only if there is no space in the main buffer,
constitute a subclass of the general expelling policies
where cells can be expelled or discarded at any time.

We keep the notation that we introduced in sec-
tion 2 in this section as well. Nevertheless we prefer
to specify the class of policies we consider and the
optimal policies in words rather than mathematically
in this section, since the first description is precise
enough and we don’t need the mathematical descrip-
tion in the proof of the results.

3.1 Pushout policies

The class of pushout policies G contains all policies
which obey the following rules.

a) A cell can be ezpelled from the main buffer only if
il is “pushed out” by another cell in the temporary
buffer which cannot enter the main buffer because
i 1s full.

b} A cell from the temporary buffer can be discarded
only if the main buffer s full.

The following policy is optimal in GP.

Squeeze-out Policy #P°:

Append the cells from the temporary buffer lo the
end of the main buffer, high priority cells first.

If the main buffer is full, and there are cells in
the temporary buffer, push out the low priority
cells starting from those closest to the head of the
queue.

If all the low priority cells in the main buffer are
pushed out, and there are still cells in the tempo-
rary buffer, discard them.

The policy #P° is optimal within G? in a very strong
sense. It minimizes at every slot ¢ the number of high
priority cells lost. Furthermore this holds for arbi-
trary arrival processes and not only for i.i.d. arrivals.
Let D*(t), D'(t) and D*(t), D'(t) be the numbers of
dropped cells by the end of slot ¢ of the high and low
priority classes respectively under policy #7° and for
an arbitrary policy # € GP. Then we have the follow-
ing.

Theorem 2: When the system starts from the same
initial state under policies 77° and #, and the arrivals
are identical under the two policies, we have
D)2 D)

D'(t)+ D*t) = D'(t) + D*(t) t=1,2,---
3.2 Expelling policies

The class of expelling policies GE has as members
all policies that append the new cells from the tempo-
rary buffer at the end of the queue and do not rear-
range the cells in the main buffer. An expelling pol-
icy is allowed to expel or block any cell in the main
or temporary buffer respectively, irrespective of the
state. Hence the only requirement an expelling policy
should satisfy is to preserve the FIFO order. Other
than that it can drop cells arbitrarily. Clearly the
class of expelling policies is wider than the previous
two.

We were able to obtain properties of the optimal
policy that narrow down the class of policies that con-
tains the optimal policy significantly. We have shown
that an optimal policy within GF should act accord-
ing to the following two rules.

1. The cells are placed from the temporary buffer to
the main buffer, high priorily cells first. If they do
not fit then low priority cells are expelled starling
from those closest o the head of the queue.

2a. If the cell at the head of the queue is of high pri-
orily then il is served.

2b. If the cell at the head of the queue is of low pri-
ority then either that cell is served, or all the low
priorily cells from the head of the queue until the
high,priority cell closest to the head of the queue
are ezpelled, and that high priority cell is served.

Note that the two rules above characterize the opti-
mal actions completely for some states and in general
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up to a binary decision of whether all low priority cells
in the head of the queue are dropped or none of them.
As in the case of pushout policies the above result
holds for arbitrary arrival processes. Let GEO be the
class of policies which satisfy the above two rules. We
claim that the optimal policy within GF should be-
long to GZO. More specifically we show the following.

Theorem 3: For every policy 7 € G there exists
a policy # € GF9 such that if the system starts from
the same initial state under the two policies and the
arrival process is identical under the two policies we
have

DM(1) < Dh(t)

DM D) < DM+ D) t=1,2-  (3)
where D*, D!(t) is the number of lost cells of high
and low priority respectively under # and similarly
for D*(t), D'(t) under .

Note that in the theorem, D" (t) +l~)’(t) < DM t)+
D'(t) implies D'(t) — D'(t) < D"(t) — D*(t), which
means even if D'(t) > D'(t), the difference between
themn will be less than or equal to that between D" (¢)
and D®(t). Therefore, theorem 3 implies the discard-
ing cost in # will be less than or equal to that in .
The details of the proofs for the theorems in this sec-
tion can be found in {12, 13].

4. Discussion and Open Problems

The problem of buffer management at an output
link of an ATM node was considered in the paper.
Three classes of policies were studied and optimal
policies with respect to losses were identified. The
classes of policies that have been considered are im-
plementable by the architectures proposed in [7] using
the Sequencer chip.

Regarding the assumptions about the arrivals, for
the expelling and pushout policies our results hold for
any arrival process while for the discarding policies
.1.d. arrivals were assumed. If Markov modulated ar-
rivals are considered in the latter case, then during the
periods at which the states of the underlying Markov
processes of the arrivals are frozen the arrivals are i.1.d.
and a threshold type of policy will be optimal. If the
state of the underlying Markov process of the arrivals
is included in the state description of the system to-
gether with the queue lengths then the optimal policy
is conjectured to be of threshold type again but the
thresholds will be functions of the underlying state as
well.

We believe that policies analogous to the squeeze-

out policy and the optimal expelling policy class can
be used for the buffer control of packet-switched net-
works with variable sized packets and loss priorities.
Two examples of such networks are Frame Relay and
Packet Transfer Mode(PTM) networks[8]. We also
believe that the results presented in this paper for
pushout and expelling policies can be extended to
a node modeled by an M/M/1/k queue fed by two
classes of customers whose (exponential) service time
distributions are identical.

In our study we focused on the performance degra-
dation due to blocking. Another important perfor-
mance measure is the delay experienced by the cells
in the output link buffer. The issue of delay experi-
enced by traffic streams multiplexed through a com-
mon transmission link has been studied extensively.
An important open problem for further investigation
is the joint consideration of loss and delay require-
ments. Scheduling policies which attempt to satisfy
simultaneously certain delay and loss requirements
need to be investigated. The ultimate goal remains
to be the study of the buffer management control
schemes as they interact at the network level in differ-
ent nodes. This interaction determines the end-to-end
system performance.

5. Numerical results

Figures 2 and 3 display some of the preliminary nu-
merical results we have obtained. The objective was to
compare the performance of some of the policies dis-
cussed in this paper. A two-priority system with i.i.d.
arrivals was considered. The arrival process is derived
from a binomial distribution and is the same as the
one used in [5]. The arrival rate as well as the fraction
of traffic from the two priority classes was varied. The
cost of losing a high priority cell was varied from 10 to
10® times the cost of losing a low priority cell. Value
iteration[14] was used to compute the performance of
the optimal discarding, expelling and pushout policies
as well as the default policy. The default policy is the
one where cells are simply admitted to the main buffer
in FIFO order, high priority cells first, and dropped
if it is full. We considered a system with main and
temporary buffer sizes of 7 and 3, respectively. The
squeeze-out and default policies corresponded to sin-
gle points in the plots in Figure 2 and Figure 3 since
they are unaffected by the discarding costs. The per-
formance of other pushout policies are provided for
comparison. In both of these policies, low priority cells
from the temporary buffer do not push out low prior-
ity cells from the main buffer but are dropped instead.
In last-in-first-drop and first-in-first-drop(LIFD and
FIFD) pushout policies high priority cells push out the
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low priority cells that are, respectively, furthest from
and closest to the head of the queue. Note that for
most cases considered, there is little difference in the
performance of the LIFD pushout, FIFD pushout and
squeeze-out policies. As expected, the expelling policy
performed better than the discarding policy; the dif-
ference between the two policies depended on the total
traffic and relative proportions of the two classes of
traffic. For the optimum expelling policy, the decision
of whether to serve the low priority cell at the head
of the queue or to serve the high priority cell closest
to the head of the queue was found to be almost com-
pletely dependent on the number of high priority cells
in the main buffer. An expelling policy which made
this decision based on a threshold on the number of
high priority cells in the main buffer achieved results
very close to the optimum expelling policy. This sub-
optirnal policy could therefore be used as a basis for a
practical implementation of the expelling policy.
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Figure 2: Loss probabilities for two classes with main buffer size=7, temporary buffer size=3, discarding cost of
a low priority cell=1, discarding cost of a high priority cell changes from 10 to 10%. In the figure, “A” stands
for squeeze-out policy, “#” for LIFD pushout, “o” for FIFD pushout, “0” for discarding policy, “x” for default
policy, which sets the thresholds of both classes to be the main buffer size, and “e” for expelling policy. The
numbers next to the “0” and the “o” stand for the powers, of 10, of the discarding costs of class 1 cells used to
obtain those points.
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Figure 3: Loss probabilities for two classes with main buffer size=7, temporary buffer size=3, discarding cost of
a low priority cell=1, discarding cost of a high priority cell changes from 10 to 10%. In the figure, “A” stands
for squeeze-out policy, “+” for LIFD pushout, “o” for FIFD pushout, “0” for discarding policy, “x” for default
policy, which sets the thresholds of both classes to be the main buffer size, and “e” for expelling policy. The
numbers next to the “0” and the “o” stand for the powers, of 10, of the discarding costs of class 1 cells used to
obtain those points.
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