
Optimal Space Priority Policies for Shared Memory ATM

Systems �

Rajarshi Roy and Shivendra S. Panwar y

Center for Advanced Technology in Telecommunications

Polytechnic University

6 Metrotech Center

Brooklyn, NY 11201

July 10th, 1997

Abstract

In this paper we study the problem of the optimal design of bu�er management policies for a shared

memory ATM switch or demultiplexer. A system with cells of two di�erent space priorities is considered.

Our objective is to determine the optimal policy that minimizes the total weighted cell loss. The prob-

lem of �nding the optimal policy within the class of pushout and expelling policies is considered. Using

sample path techniques the search space for the optimal policy is reduced to a subset of the entire policy

set for each policy class. A numerical study based on value iteration technique is used to investigate

the structure of the optimal policy. This technique is also used to calculate the loss probabilities for

di�erent classes of cells for a system with small bu�er size.

Keywords: Markov Decision Theory, Sample path techniques, Shared Memory Switch, Bu�er Man-

agement, ATM.

1 Introduction

Most of the ATM switch architectures that have been proposed in the literature use some bu�er-
ing to queue cells whose service has been delayed due to contention for resources within the

switch. The location of these bu�ers and the bu�er management policy a�ects the switch per-

formance i.e., switch throughput and delay of cells in the switch to a great extent. Performance
studies of di�erent types of switches were done previously and it was shown that output queue-

ing with completely shared bu�ering achieves the optimal throughput-delay performance.[8]

Some bu�er management is necessary to ensure that an output-queued shared-memory

switch or demultiplexer does not perform poorly when some of the output queues get overloaded.

In such a case, without any control the overloaded queue will consume most of the bu�er spaces

forcing the other lightly loaded queues to incur loss. To ensure e�cient sharing of the bu�er one

needs to develop bu�er sharing schemes to ensure that bu�er space is shared properly among

�This research was supported by the New York State Center for Advanced Technology in Telecommunications,

Polytechnic University.
yTel: 718 260 3740, Fax: 718 260 3074, e-mail: panwar@kanchi.poly.edu

di�erent logical queues and high priority cells are selectively favored over low priority cells in

case of contention.

Let us describe the systemmodel and the two di�erent classes of bu�er management schemes

we will consider. The shared memory switch is modeled by a multi server queue with bounded

bu�er. The entire bu�er is partitioned into two parts: the main bu�er of size BM and the

temporary bu�er of size BT . Time is slotted and transmission of a cell takes one time slot.

During one time slot at most BT cells may arrive to the system and they are placed in the

temporary bu�er which has size BT . The cells may belong to di�erent tra�c types. This
assumption is consistent with the fact that a leaky bucket policed source may inject cells with

di�erent priority levels even if they belong to the same virtual circuit. A cost is incurred for each

cell that is dropped from the system. The cost is higher for high priority classes. The objective
is to minimize the long run average cost that is incurred from the lost packets. Depending on

the available control we have over the dropping of cells from the temporary or main bu�er and
the placement of cells in the main bu�er, we distinguish two classes of policies.

The �rst class of policies considered are pushout policies. A pushout policy is allowed to

discard cells from the main bu�er in order to make space available for cells in the temporary

bu�er which cannot enter the main bu�er because it is full. A cell from temporary bu�er cannot
be blocked from admission to the main bu�er if there is space in the main bu�er. We narrow

down the search space for an optimal pushout policy in a system with two priority classes,

with an arbitrary discrete arrival process and with an arbitrary number of logical queues. We

prove by sample path techniques that the optimal policy within the pushout class GP has to

lie within the class of squeeze-out policies GP1 , which is de�ned later.

The second class of policies considered as expelling policies. Expelling policies are allowed to

discard cells from the main bu�er or block cells in the temporary bu�er from admission into the

main bu�er irrespective of system state. Properties of the optimal expelling policy are obtained
that narrow down the the class of candidate policies considerably in a system with two classes.

More speci�cally speaking, it is shown that according to the optimal expelling policy one should

apply the squeeze-out rule for accommodating cells of each logical queue in the portion of the

main bu�er allocated to it. While serving the queue, if the cell to be served next is of high
priority then it is always served, and if the cell to be served is of low priority then that is either

served or all the low priority cells residing at the head of that logical queue are dropped and
the �rst available high priority cell is served.

In both type of policies it is assumed that the cells which enter the main bu�er in every slot

should join the end of their respective logical queues and rearrangement of cells that violate

FIFO service is not allowed.

There has been considerable amount of prior work in this area. The queueing analysis of

di�erent bu�er sharing schemes and their relative merits was analyzed in [1]. The problem of

designing optimal policies for the purpose of optimizing certain performance criteria is con-

sidered in [2]. They only consider the problem of searching for optimal policies within the

class where cells can only be blocked at the entry point of the bu�er; dropping cells once it
is accepted in the switch is not allowed. In [3] pushout is allowed and new arriving cells can

push out cells from the longest logical queue. This policy turns out to be optimal only for a

system with symmetric arrival and service processes. Guerin, Cidon, Georgiadis and Khamisy

[4] considered a Poisson arrival, single loss priority and exponential service model for sharing

memory in a switch with two output ports. They have established the optimality of a threshold

based pushout scheme using Markov decision theory.They also calculated the values of those
thresholds. For a N ported system, N � 3, they have results only for balanced input rates and

equal service rates at all the output ports. The non-optimality of [3] in the case of unequal

service rates in a two ported system is shown in their work. They do not consider packets with

di�erent loss priorities. For a N -ported system they have results only for the symmetric case.

Hung et al in [5] has provided optimal policies within the class of discarding, pushout and

expelling policies using dynamic programming and sample path based techniques. They consider

the case of general arrival models for the case of a single output port.

Hahne and Choudhury [6] have proposed a set of pushout and bu�er sharing rules. They

have proposed a backpressure mechanism for sharing bu�er across stages and a pushout scheme

for sharing bu�er among di�erent logical queues sharing a common memory. They have also

applied their policy on tra�c with multiple priorities. The lowest priority cell at the head of the

queue is selected for pushout. They have applied this work for a hierarchical switch system and
Banyan based switch system [6], [7]. Their simulation study reveals that \Delayed Pushout"

scheme works well under all load conditions.

Here we model a bu�er of �nite capacity which is being shared by several logical queues,
each of which may contain high and low priority cells. Our model is described below.

......
.
.

.

.

Main BufferTemporary
Buffer

BT 1 BM 11
2

BT

1
2

N

Figure 1: The system model

2 Model description

In our model, the two parts into which total memory of the switch/demultiplexer B is subdivided

are the main bu�er with capacity BM and the temporary bu�er with capacity BT . It is a

N ported, slotted system with packets destined to each output port or server constituting a

logical queue. FIFO order is to be maintained within each of the logical queues once the cells

are accepted in the main bu�er, each of which contain high and low priority cells. Service

time is deterministic and the servers serve one cell in every time slot if such a cell is available.

In one slot at most BT cells can arrive. Clearly for a switch N = BT , if each input line can

inject at most one cell in every time slot. The value of BT in case of a demultiplexer will be

dependent on the input line speed. At every decision epoch cells from the temporary bu�er are
either admitted to the main bu�er, possibly by pushing out some cells from the main bu�er, or

dropped.

3 Pushout Policies

The class of pushout policies GP is de�ned by the following rules: (a) A cell can be expelled

from main bu�er only if it is pushed out by another cell in the temporary bu�er and the main
bu�er is full, (b) A cell from the temporary bu�er can be discarded only if the main bu�er is

full, (c) A cell can never be dropped if there is room for it in the main bu�er.

The class of policies GP1 is de�ned as the following: Suppose we are given the number

of bu�er positions that will be allocated to a particular logical queue after the drop/pushout
decision at a particular integer time in the main bu�er is strictly less than the number of cells

it had in the entire system just before the decision epoch t, i.e. at t� a given number of cells

are to be dropped/pushed out from each logical queue. Then the rules to be followed are (a)

Append the cells that are in the temporary bu�er and belong to logical queue n to the end of

the main bu�er in the allocated position, high priority cells �rst (if switch model) or in FIFO

order (if demultiplexer model). In switches input line speed is such that at every time slot

only one cell can come at one input line. This implies that not more than one cell of the same

virtual circuit can arrive in the same time slot. In demultiplexer model, it is possible that there

is some high speed source that sends more than one cell in the same time slot. In ATM we are

required to preserve the cell sequence. That is why reordering of cells can be allowed as they

are placed from the temporary to the main bu�er in the case of a switch model but cannot be

done in the case of a demultiplexer model. The same reason dictates that reordering of cells

is not allowed in the logical queues maintained in the main bu�er. (b) If the amount of bu�er
allocated for logical queue n in the main bu�er is full, and there are cells of that logical queue

in the temporary bu�er, push out the low-priority cells starting from those closest to the head

of that logical queue, (c) If all low priority cells of that logical queue which are in the main
bu�er are pushed out, discard all remaining cells of that logical queue which are in temporary

bu�er. This entire procedure de�nes the squeeze-out class of policies policy.

Clearly, B = BM + BT . The amount of bu�ering allocated to one logical queue i at time t

is Bi(t). It is evident that Bi(t) � BM .

3.1 Problem formulation

Cells are classi�ed into two priority classes. The high priority class is more sensitive to cell losses.

Without loss of generality we assume that the priority of class 1 is higher than the priority of
class 2. The priority of a class is reected by the cost that is incurred by the dropping of a cell of

that class. We denote by Xn;i(t) the class of the cell residing at the i-th place of the n-th logical

queue by the end of the slot [t�1; t]. Here i = 1; 2; :::; Ln(t), where Ln(t) is the number of bu�er

places the logical queue n occupies at t�. Clearly,
PN

n=1 Ln(t) = B. X
1
(t); X

2
(t); ::::::::;XN(t)

is the vector that can be taken as a state, where Xn(t) = (Xn;i(t) : i = 1; 2; ::::; Ln(t)). If there

is any empty bu�er places, they can be arbitrarily assumed to be part of a particular �xed
logical queue and the value of Xn;i(t) corresponding to them is 0.

We want to �nd out the policy �
1
amongst the class of pushout policies GP so that

E�1(
P1

t=0(Ch�Dh(t)+Cl�Dl(t))jany initial state = x) � E�2(
P1

t=0(Ch�Dh(t)+Cl�Dl(t))jany in initial state =

x), 8�
2
2 GP . Here, Dh(t) is the number of high priority cells dropped from the system up to

the end of slot [t� 1; t]. Dl(t) is the number of low priority cells dropped from the system up

to the end of the slot [t� 1; t]. Ch and Cl are positive real numbers, Ch � Cl. E�i the expecta-
tion when policy �i is used. One can write with this value function the dynamic programming

equations if the arrival statistics are completely characterized.

The objective of theorem 1, which is stated below is to show that the policy �p0 which is opti-

mal in GP in the sense that D�p0
h (t)+D�p0

l (t) � D�
h(t)+D

�
l (t), 8 integer time t 2 f0; 1; 2; 3; ::::g

and 8� 2 GP such that � 6= �p0 and also D�p0
h (t) � D�

h(t); lies in GP1 � GP . Here, D
�
h(t) is

the number of high priority cells dropped upto time t under policy � and D�
l (t) is the number

of low priority cells dropped up to time t under that policy.

Theorem 1: When the systems start with the same initial conditions and under policies

�
1
and �

2
where �

1
2 GP1 and �

2
2 Gc

P1
\ GP and the arrivals are identical then we have

D�1
h (t) � D�2

h (t) and D�1
h (t) +D�1

l (t) � D�2
h (t) +D�2

l (t), 8t 2 f1; 2; :::g.

The proof of this theorem depends on lemma 1.1 which is stated below. Here, we tag the

n-th logical queue.

Lemma 1.1: For any policy �
2
2 GP but �

2
2 Gc

P1
there exists a policy �

3
, which acts

similarly as a policy that belongs to GP1 at t = 1 and if appropriately de�ned for all inte-

ger time t � 1, under same initial condition and same arrival statistics D�3
h (t) � D

�2
h (t) and

D
�3
h (t) +D

�3
l (t) � D

�2
h (t) +D

�2
l (t), 8t 2 f1; 2; :::g.

Proof of the lemma and theorem given above is not given here for space restrictions.

3.2 Some Counterexamples

These are counterexamples to two sample-path dominance conjectures. These conjectures are
true in expected value sense at least for certain values of the load parameters. That fact is

revealed by the numerical results presented in the next section.

3.2.1 Counterexample 1

This is a counterexample to the conjecture that a high priority cell should always pushout a
low priority cell, if there is any. Here it will be shown that a performance criteria such as given

the previous section cannot be satis�ed for every sample path of the input process if such a

policy is followed. We consider a 2x2 switch with four main bu�er places and two temporary

bu�er places. We refer to the policy that recommends pushout from the longest queue with low

priority cell as the conjectured policy and the other one as an alternative policy. We start with

the same initial state with one low priority cell destined to output 1, three high priority cells

destined to output 2 and two high priority cells in the temporary bu�er destined to output 2.
Under the conjectured policy the low priority cell is dropped and one of the high priority cells

are accepted from the temporary bu�er. Under the alternative policy both the high priority

cells are dropped from the temporary bu�er. Now if two high priority cells come in the next

time slot then at the end of slot two under both the policies we have the same state. If in all the

future decision epochs we follow same actions for both the policies, then under the alternative

policy we incur less total packet loss.

3.2.2 Counterexample 2

This is a counterexample of the conjecture that a low priority cell can never pushout a high

priority cell under optimal policy and this is true for every sample path. Consider a system
with main bu�er size of four and temporary bu�er size of two. The initial state is such that

there are four high priority cells destined to output 2 in the main bu�er and one low priority

cell destined to output 1 in the temporary bu�er. Under the conjectured policy we drop the

low priority cell and under the alternative policy we pushout one high priority cell from the

main bu�er and admit the low priority cell. Under the conjectured policy we serve one high
priority cell destined to output 2 and under the alternative policy we serve the low priority cell

destined to output 1 and one high priority cell destined to output 2. If in the next slot two

high priority cells destined to output 2 comes then at the end of that slot we come to the same

state under both the policies and then in the future decision epochs both the policies can take

the same actions at every slot. So the total cell loss under the alternative policy will be less.

These counterexamples does show that inter queue pushout policy investigation is more

complex and the results are not sample path wise true but may be true in the expected value

sense. So we did a numerical study using value iteration and the goal of the ongoing work is to

�nd out analytical structures of the optimal policy using the numerical study as a supporting
tool.

3.3 Numerical study for Pushout Policy

We considered a two-ported shared memory switch modeled as a queue with bounded bu�er

and two servers each with a constant service rate of one time slot/cell. At any time slot at most
two cells can come into the system. The arrival process is i.i.d. and the cells can belong to

either of the two logical queues with probabilities b
1
and b

2
. Given the event that a cell belongs

to logical queue 1, it can be of high or low priority with probability c
1
and c

2
and given the

event that it belongs to logical queue 2, it can be of high or low priority with probability d
1

and d
2
. We have here b

1
+ b

2
= 1, c

1
+ c

2
= 1 and d

1
+ d

2
= 1. If we drop a high priority cell

we incur a loss of Ch and if we drop a low priority packet we incur a cost of Cl. Our system

has six bu�er places of which two are temporary bu�er places. At every decision epoch we have
to make sure that after the cell dropping/pushout decision is taken we should not be left with

more than four cells in the bu�er because at most two cells can come between a decision epoch

and the next one (they are one time slot apart). The cells which belong to one logical queue

may or may not belong to the same virtual circuit, so we serve each logical queue in FCFS

order.

For our numerical study we have assumed B = 4 and our arrival process is i.i.d. with the

statistics that at any time slot 0, 1 or 2 packets can come into the system with probabilities a
0
,

a
1
and a

2
respectively. The sum of these probabilities is 1. We formulate the problem in the

framework of Markov decision theory and seek to �nd out the optimal policy numerically that

minimizes the total undiscounted expected cost over any �nite horizon.

The numerical results reveal that pushout from the longest queue policy when we have only

either high or low priority cells in the bu�er is not optimal for an unbalanced load. Rather, the

logical queues have thresholds k
1
and k

2
with their sum at least B. Thus if we need to drop

cells we should check which logical queue has exceeded its threshold and if the new cells belong

to that one then they get dropped. If it is the other one then these new cells are accepted and

cells are pushed out from the other logical queue. For a balanced load when there are 3 cells of

high priority for both the logical queues numerical computation shows that we should drop one
from each logical queue. But for the case of 70 percent of the incoming tra�c going to output

port 1 we see that we should drop 2 cells from logical queue 1. This clearly shows the change
of value of thresholds with the o�ered load.

4 Expelling Policies

The class of expelling policies GE has as members all policies that append the new cells from

the temporary bu�er and do not rearrange them. This class of policies is even allowed to drop

cells from the main bu�er when it is not full. The only constraint is that FIFO service order

must be maintained.

In the following we will prove that the optimal policy within the class GE belongs to a

subset of that class GEO.

The class GEO is de�ned as the following:

1. The cells of each logical queue are placed from temporary bu�er to the portion of the
main bu�er allocated for it in that slot, high priority cells �rst. If they do not �t then low

priority cells are expelled starting from those closest to the head of the queue.

2a. If the cell at the head of the queue is of high priority then it is served.

2b. If the cell at the head of the queue is of low priority then either that cell is served or all

the low priority cells from the head of the queue until the high priority cell closest to the head

of the queue are expelled and that high priority cell is served.

Theorem 2: For every policy � 2 GE \ GEOc

there exists a policy �
1
2 GEO such that if

the system starts from the same initial state under the two policies and the arrival process is

identical under the two policies we have

D1h(t) � Dh(t)

D1h(t) +D1l(t) � Dh(t) +Dl(t), t = 1; 2; :::

where D1h(t),D1l(t) is the number of lost cells of high and low priority respectively under �
1

and similarly for Dh(t), Dl(t) under �.

The proof of this theorem requires the following lemma.

Lemma 2.1: For every policy � 2 GE there exists a policy �
2
, which acts according to rules 1

and 2 and is de�ned appropriately for t = 2; 3; :::;, based on �, so that if the system starts from

the same initial state and the arrival process is same under the two policies, then we have

D2h(t) � Dh(t)

D2h(t) +D2l(t) � Dh(t) +Dl(t), t = 1; 2; :::

where D2h(t),D2l(t) is the number of lost cells of high and low priority respectively under �
2

and similarly for Dh(t), Dl(t) under �.

Proof of the lemma and theorem is not given here due to space restrictions.

4.1 Numerical study for Expelling Policy

We used the system described in the numerical study for pushout policies and did see that at

certain states all the low priority cells at the head of a logical queue are dropped and the high
priority cell is served. The decision of whether to serve the low priority cell or to drop them

depends on the number of high priority cells of that logical queue in the system for most of the

cases. However, we did see that there are some pair of states such that both have more than

one low priority cell at the head of the queue and with same number of high and low priority
cells in the system, but the action chosen are di�erent.

Blocking probability calculations using value iteration shows that for the same loss prob-

ability expelling policies can handle a higher load region. Expelling policy does allow us to

improve the performance of high priority class compared to pushout policies at the cost of some

degradation in the performance of low priority class. Here the gain of the Markov decision pro-

cess is calculated, which gives us the loss probabilities of di�erent class of cells. In the results

presented in the tables P (Hi) indicates the loss probability of high priority cells of the i-th

logical queue and P (Li) denotes the loss probability of the low priority cells of the i-th logical

queue. Ch is the cost of dropping a high priority cell and this quantity is varied to achieve

di�erent degrees of expelling low priority cells in favor of high priority cells. Cl, the cost of

dropping a low priority cell is always 1.

References

[1] F. Kamoun and L. Kleinrock, \Analysis of Shared Finite Storage in a Computer Network

Node Environment Under General Tra�c Conditions," IEEE Trans. on Communications,
Vol. COM-28, No. 7, July 1980.

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 3.51x10�4 2.20x10�4 2.20x10�4 2.20x10�4

P (L
1
) 3.0x10�3 1.01x10�2 1.01x10�2 1.01x10�2

P (H
2
) 3.51x10�4 2.20x10�4 2.20x10�4 2.20x10�4

P (L
2
) 3.0x10�3 1.01x10�2 1.01x10�2 1.01x10�2

Table 1: O�ered Load=0.5; Splitting of Tra�c=1:1; High:Low=9:1

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 1.02x10�5 4.0x10�6 1.13x10�6 1.13x10�6

P (L
1
) 5.10x10�4 5.0x10�2 3.09x10�2 3.09x10�2

P (H
2
) 1.02x10�5 4.0x10�6 1.13x10�6 1.13x10�6

P (L
2
) 5.10x10�4 5.0x10�2 3.09x10�2 3.09x10�2

Table 2: O�ered Load=0.5; Splitting of Tra�c=1:1; High:Low=1:1

[2] G. J. Foschini and B. Gopinath, \Sharing Memory Optimally," IEEE Trans. on Commu-

nications, Vol. COM-31, No. 3, March 1983.

[3] S. X. Wei, E. J. Coyle and M. T. Hsiao, \An Optimal Bu�er Management Policy for High

Performance Packet Switching," IEEE GLOBECOM'91, Vol. 2, pp. 924-928, December,
1991.

[4] I. Cidon, L.Georgiadis, R. Guerin, A. Khamisy, \Optimal bu�er sharing," IEEE JSAC,

september 1995, vol 13, No. 7, pp. 1229-1240.

[5] L. Tassiulas, Y. C. Hung and S. S. Panwar, \Optimal Bu�er Control During Congestion

in an ATM Network Node," IEEE/ACM Transactions on Networking, August 1994, Vol.
2, No. 4, pp. 374-386.

[6] Abhijit Choudhury, Ellen L. Hahne, \Bu�er Management in a Hierarchical Shared Memory
Switch," IEEE INFOCOM'94, Vol. 3, pp. 1410-1419, June, 1994.

[7] Debasis Basak, Abhijit K. Choudhury, Ellen L. Hahne, \Sharing Memory in Banyan-based

ATM Switches," Preprint.

[8] Mark J. Karol, Michael J. Hluchyj and Samuel P. Morgan, \Input Versus Output Queueing

on a Space-Division Packet Switch," IEEE Transactions on Communications, December

1987, Vol. 35, No. 12, pp. 1347-1356.

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 3.0x10�9 6.0x10�10 3.10x10�11 2.0x10�12

P (L
1
) 6.0x10�4 6.10x10�4 7.02x10�4 1.0x10�2

P (H
2
) 3.0x10�9 6.0x10�10 3.10x10�11 2.0x10�12

P (L
2
) 6.0x10�4 6.10x10�4 7.02x10�4 1.0x10�2

Table 3: O�ered Load=0.5; Splitting of Tra�c=1:1; High:Low=1:9

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 5.0x10�4 1.01x10�4 4.0x10�5 4.0x10�5

P (L
1
) 1.7x10�2 4.7x10�2 1.0x10�1 1.0x10�1

P (H
2
) 3.0x10�7 7.0x10�9 1.0x10�9 1.0x10�9

P (L
2
) 2.4x10�4 4.1x10�5 4.0x10�3 4.0x10�3

Table 4: O�ered Load=0.5; Splitting of Tra�c=4:1; High:Low=1:1

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 1.0x10�7 2.0x10�8 1.1x10�8 4.0x10�11

P (L
1
) 1.8x10�2 1.9x10�2 2.0x10�2 6.0x10�2

P (H
2
) 7.0x10�11 4.0x10�12 1.0x10�13 8.01x10�15

P (L
2
) 7.6x10�6 6.0x10�7 4.0x10�6 1.5x10�3

Table 5: O�ered Load=0.5; Splitting of Tra�c=4:1; High:Low=1:9

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 5.3x10�3 3.6x10�3 3.6x10�3 3.6x10�3

P (L
1
) 3.51x10�3 2.82x10�2 2.82x10�2 2.82x10�2

P (H
2
) 5.3x10�3 3.6x10�3 3.6x10�3 3.6x10�3

P (L
2
) 3.51x10�3 2.82x10�2 2.82x10�2 2.82x10�2

Table 6: O�ered Load=0.7; Splitting of Tra�c=1:1; High:Low=9:1

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 2.54x10�4 6.32x10�5 2.0x10�5 2.0x10�5

P (L
1
) 8.45x10�3 1.60x10�2 7.58x10�2 7.58x10�2

P (H
2
) 2.54x10�4 6.32x10�5 2.0x10�5 2.0x10�5

P (L
2
) 8.45x10�3 1.60x10�2 7.58x10�2 7.58x10�2

Table 7: O�ered Load=0.7; Splitting of Tra�c=1:1; High:Low=1:1

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 4.75x10�8 1.11x10�8 6.23x10�10 2.49x10�11

P (L
1
) 8.58x10�3 8.81x10�3 9.40x10�3 3.82x10�2

P (H
2
) 4.75x10�8 1.11x10�8 6.23x10�10 2.49x10�11

P (L
2
) 8.58x10�3 8.81x10�3 9.40x10�3 3.82x10�2

Table 8: O�ered Load=0.7; Splitting of Tra�c=1:1; High:Low=1:9

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 6.40x10�3 6.70x10�4 6.70x10�4 6.70x10�4

P (L
1
) 1.56x10�1 2.68x10�1 2.68x10�1 2.68x10�1

P (H
2
) 1.82x10�7 1.68x10�8 1.68x10�8 1.68x10�8

P (L
2
) 2.81x10�3 8.24x10�3 8.24x10�3 8.24x10�3

Table 9: O�ered Load=0.7; Splitting of Tra�c=4:1; High:Low=1:1

Loss Pushout Expelling

Probabilities Policy Policy

Ch = 103 Ch = 106 Ch = 1011

P (H
1
) 9.63x10�7 2.85x10�7 1.44x10�7 4.75x10�10

P (L
1
) 1.63x10�1 1.64x10�1 1.68x10�1 2.15x10�1

P (H
2
) 5.76x10�11 5.73x10�12 1.20x10�12 9.0x10�14

P (L
2
) 3.01x10�6 7.64x10�6 1.53x10�5 2.96x10�3

Table 10: O�ered Load=0.7; Splitting of Tra�c=4:1; High:Low=1:9

