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The problem of call admission in telecommunications can considered equivalent to scheduling

impatient customers in a queueing system. In an overloaded call admission system, if some
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Abstract

The problem of call admission in telecommunications is equivalent to the problem
of scheduling impatient customers in a queueing system. Given the distribution of the
customer deadlines, a scheduling policy decides the customer service order and also
which customer(s) to reject. We formulate this problem as a discrete time Markov
decision process to maximize the average reward for serving a customer before its
deadline. Under the assumptions that arrivals are described by a Bernoulli process,
service times are arbitrarily distributed, and the deadline cumulative distribution is
concave, we show that the last-in first-out policy that rejects customers whose waiting
times exceed a threshold (LIFO-TO) is an optimal stationary policy. When buffer
occupancy is the only information available for decision making, the optimal policy
turns out to be a pushout LIFO policy (LIFO-PO) where the oldest customers are
pushed out when the buffer size exceeds a threshold. This latter result is established
under the additional assumption that service times are geometrically distributed. The
extension of our results to the continuous time model is also discussed.
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people start dialing before a delayed dial tone is heard, then the system will not receive all
the digits dialed. However, the call is still processed and an unsuccessful call results. Another
application of this kind of queueing system is the transmission of time-constrained messages
over a communication channel. These messages have to reach their receivers within a certain
time interval of their transmission, or they are useless to the receivers and considered lost.
Thus the system performance is significantly affected by the behavior of impatient customers
who should be served before their respective deadlines. Two possible scenarios are often
encountered in this kind of system. The first is that the server of the queue is aware of each
customer’s deadline. The customers whose delay times exceed their deadlines are discarded
without service. In the second scenario, the server is only aware of the deadline distribution of
the customers. Therefore, some server work is useless because of the expiration of customers’
deadlines.

This paper is devoted to searching the optimal policies when only the deadline cumulative
distribution is known. Without knowing the deadline of every specific customer, the control
action is to decide, at appropriate decision instants, which customer to serve and which cus-
tomer(s) to reject. The rejection is necessary since customers whose deadlines have expired
do not leave the queue automatically. Therefore, a customer could be either served in an
order decided by a service discipline or discarded by a rejection scheme. From now on, we use
the term queueing policy to represent the combination of the service discipline and rejection
scheme in a queue. The following notation is used for some specific queueing policies in this
paper:

(¢) FIFO(or LIFO)-BL: first-in first-out (or last-in first-out) service discipline; a customer
arriving to see a “full” buffer leaves immediately (blocked).

(¢¢) FIFO(or LIFO)-PO: first-in first-out (or last-in first-out) service discipline; a customer
arriving to see a “full” buffer pushes out the “oldest” customer (the one with the longest
waiting time) in the buffer and joins the queue.

(¢4) FIFO(or LIFO)-TO: first-in first-out (or last-in first-out) service discipline; every arriv-
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ing customer joins the buffer but will leave at a critical time after its arrival if it is still in
the buffer at that time (time-out).

More precisely, the above notation is used for queueing policy classes. Those classes consist
of the queueing policies with “full” buffer size (for BL and PO schemes) or critical time (for
TO schemes) varying with the state of the queue.

Throughout the years, several papers have considered the problem of serving customers
with unknown deadlines. Optimal service disciplines were investigated in [1, 2, 3] in which no
rejection scheme is adopted. [4] discussed the optimal control problem for a non-preemptive
M/M/1/k overloaded queue under FIFO-BL. It is proved that a fixed threshold type rejection
decision is optimal for a BL scheme. Other work [1, 5] on this issue focuses on the performance
evaluation of various queueing policies.

This paper is organized as follows. Section 2 contains a discrete time queueing model and
the problem formulation. In Section 3, the discounted total reward problem is studied to
derive an optimal stationary LIFO-TQ policy. Next in Section 4, the optimality of this LIFQ-
TO policy is proved for the good throughput (goodput) problem. Finally, we determine the
optimal policy under a reduced information structure in Section 5. The pfevious results for

the discrete time model are also extended to continuous time.

2 The Model

We consider an infinite capacity queue with a slotted single server. Let a; < a3 < ...
denote the arrival times of customers to this system where the i-th customer arrives in slot
a; € IN, 1 < 4. We assume that arrivals are described by a Bernoulli process with p,
denoting the probability of an arrival in a slot. Associated with the customer ; is a random
relative deadline d;, the time period in which it should begin service after a;, 1 < i. We
assume that {d;}{2; is an independent and identically distributed (ii.d.) sequence random
variables (r.v.’s) with cumulative distribution Fy(k) = Pr(d; < k), k=1,2,---. Unless noted

otherwise, Fy(k) is a concave function, i.e., Fy(k + 1) — Fy(k) < Fy(k) — Fy(k — 1) for all




k> 1. Let {b;}32, be a sequence of i.i.d. random variables that denote the customer service
times in slots. In particular, the i-th customer that is scheduled into service is assigned b;
slots of service. Let fy(k) = Prlb; = k], k = 1,2, --. Last, 5 = ({a;}2,, {0i}2,) is referred
to as an input sample path.

We are interested in policies which decides whether or not a customer will receive service
and, the order in which customers that receive service will be served. Customers that are
chosen not to receive service are removed from the queue. We assume that these policies
have available to them a complete history of the system including the amount of time that
each customer, currently in the queue, has spent in the queue. Last, we restrict ourselves to
non-preemptive and non-idling policies. Let ¥ denote the class of such policies.

We are interested in the following performance metric, N,(t), the number of customers
that begin service prior to their deadlines under 7 € ¥ by the ¢-th slot, ¢ > 1. Define the
system goodput to be

E[Nx(t)]

G, = litminf————-i———, (1)

—00
Our objective is to determine the policy 7 € ¥ that maximizes G,.

Let W] denote the waiting time of a served customer  under policy 7, i.e. the time
between its arrival and the beginning of its service. We adopt the convention that W = co
whenever 7 is rejected. We have

EIN()I8] = E{ X Pr(W; < )
1ER(S)

= B{ X [1- F(W7)), @

iER(8S)
where ®,(5) is the set of customers that depart from the buffer by ¢ under policy 7, either
due to a service completion or as a result of rejection conditioned on the arrival times and
service times. The conditioning on S can be removed to obtain E [N:(t)]. Relation (2) allows
us to use the same sample path to compare the performances of different queueing policies.
Since policies are non-preemptive, the decisions for customer service can be made only

when the server is idle. Without loss of generality, we restrict ourselves to policies that
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reject customers only at service decision moments. At a decision instant, the system can be
modelled by s = (wy,w,, -+, w,) where n denotes the number of customers in the queue and
wy < wy < -+ < wy, denote the times they have spent in the queue. If n = 0, then s = .
The n customers are labeled as ¢, ¢y, - - -, ¢, where ¢; has been in the queue for w; units of
time. Let S be the set of all feasible states of the queue, S = {(wi,wa, -+ wp)|wy < wy <

<o < wyyn > 0}

3 Discounted Total Reward Problem

Instead of directly considering the average reward (goodput) metric as defined in (1), we
first study the simpler problem of maximizing the discounted total reward V.¥(so) defined
below. Let the state of the system at time 0 be sy € S. At time instant i7 > 0, customer ¢
is scheduled with reward 1 — Fy(W/) under policy 7. Define
Vi(s0) = E{3_ o [1 — Fa(W/)]|so}, (3)
t=0

with 0 < @ < 1 as a discount factor. Let
V(s0) = sup V2(so).
Policy 7* is said to be a-optimal if
Vi (s0) = V%(s0) Vsg € S.

We also introduce V2 (s, S) to be the value function with initial state sy conditioned on input
sample S.

Let A, denote the set of possible actions that are permitted when the state of the system
immediately preceding an action is s. If an action a € A, is taken to serve customer ¢ in
system state s, it incurs a reward R(a) = 1 — Fy(w;). Otherwise, R(a) = 0. This reward is
bounded in every state between zero and one. Therefore, (3) is also bounded between zero

and 1/(1 — &) and is well defined. Furthermore from [8], an a-optimal policy can be found

within the class of Markov stationary policies.




Now consider an extended state space, £ = S x {vlv = 0,1,2,---}, defined at all the
slot epochs. Here, v indicates the status of the server, v = 0 denoting an idle server and
v > 0 denoting the number of slots of ongoing service. Thus, there is always a mapping in
S space for any state e € £ with v = 0. With non-preemptive service and the restriction on
rejections, the control action is pseudo in a state with v 0 and incurs no reward (R(a) = 0).
Let Pee/(a) denote the probability that the state at an action epoch is e’ given that it was e
at the previous action epoch and action @ was taken. Then the sequence of states in space
& forms a Markov chain under a stationary policy with transition probability P..(a). By

using Bellman’s equation for dynamic optimality [6, 7], we have
V(e) = max{R(a) + ad P(a)Ve(e))} Yee £. (4)

Turning our attention back to the state space S described in the last section, all control
actions are active at the service decision moments. Under a stationary policy =, the control
action a is given by a function 7 : § — {0,1,2,---} x {S]$ C IN*+}. Here 7(s) is a pair
(1, D) where either I = 0 if no customer is served, or 1 < [ < n, if a customer ¢ is served.
D c {1,2,---,n} denotes the subset of customers in the buffer that are rejected, [ ¢ D.
Obviously, 7(s) = (0,0) whenever s = §. In particular, [ = 0 when D = {1,2,---,n},
1.e., when all the customers are rejected. Also, when ! #0and D ={1,2,---,n} ~ {I}, no
customer stays in the buffer after the action. For reward function, we have R(a) = 1 — Fy(w)
except R(a) = 0 when | = 0. Let 7,(a) denote the time until the next decision epoch in
state s’ given that the system state at the preceding decision epoch was s and action a was
taken. If | =0, 7,(a) is fhe time until the next arrival resulting in the state &' = (0) and is
geometrically distribufed with parameter p,. Otherwise if [ # 0, 7,(a) is a service time. In
this case, s" consists of two sets of customer waiting times expressed as ¢ = (s1,85). The
first, 1 = (wi,wy, -+, w},), wy, > -+ > wh > w} > 0, contains the waiting times of m
arrivals during the service period. If 7,(a) = k, then k > w;, +12>m > 0. In case of
no arrival in 7,(a) (m = 0), s = 0. The second, s} contains the waiting times of those

customers that were waiting in the system at the last decision moment. Their waiting times




increase by 7,(a) = k, i.e., sy = {w; + k|w; € 5,i # [,i ¢ D}.
From the above discussion, equation (4) can be modified in S space as
Ve(s) = max{R(a) + >~ > Pr[r,(a) = k, 1V (s} Vs e S. (5)
sk
The range of k depends on the transition from s to s after action a. Specifically, we have
( Z}?i_ﬂ pa(l - pa)k_laka l= 0;

’ (Xi.w/ 1 k Zn — Pa k—mak"
Z;Pr[rs(a) =k,s]ak=J Lk, +1 Jo(R)pgH(1 pl;()andD‘—‘{laz""’n}—{l}; (6)

L fo(B)p (1 — pa)*™a*, otherwise,
where [ = 0 in the first expression gives s’ = (0) while the second leads to s’ = (s1,0). More

generally in the third expression, & is fixed at the value given in sh.
3.1 General policy analysis

In this section, we derive structural properties of the optimal policy for our problem based

on (3).

Lemma 3.1 If the deadline cumulative distribution, Fy(k), is concave in k over the non-

negative integers, then there exists an optimal policy v € ¥ that serves those customers not

rejected in LIFO order.

Proof: Assume that there exists no optimal policy in the LIFO class. Let = be an optimal
policy. Choose an input sample where 7 deviates from the LIFO service order at time ky.
Customers ¢ and j are among the customers available for service and J is the one with
the shortest waiting time in the buffer at that time (4 > 1). Under =, 1 gets served first.
Customer j is either scheduled at time k, > k1 + b; where b; is the service time received by

¢, or rejected after k; under 7. We construct a new policy =’ as follows:
o At time ky, 7’ serves j instead of 7

o 7' serves i at time ky if 7 serves j at that time;




o 7' rejects ¢ if 7 rejects j;
: !
e otherwise 7’ emulates 7.

There are two cases.

Case 1 : If customer j is rejected by  after ki, ©' will reject ¢. We have

~

Vi(s,8) = V(s,8) = aM[Fy(W;) — Fy(W;)] > 0 (7)

since W; > W; and Fy(.) is a non-decreasing function. Hence. 7’ is at least as good as
J 3

7 in this case.

Case 2 : If 7 chooses to serve j at ky, 7' chooses to serve customer ¢ instead. Then

a~

Vi(s,8) = V2(s,5)
= [l = Fa(Wj)] + o [1 — Fy(W; + k; — ky)]
~oM[1 = Fy(W))] — o [1 — Fy(W; + by — ky))]
= oF{[FUWi) = Fu(Wi)] + o5 [Fy(W; + by — ky) — Fu(Ws + by — ky)])
> o {[Fu(Wh) = Fo(Wy)] = [Fa(W; + by = k) = Fo(W; + b — ko))

> 0.

The last inequality follows from the fact that Fy(.)is a non-decreasing concave function.

Therefore, 7’ is better than 7 in this case.

This yields a contradiction as the above two cases establishes that policy 7’ is better than «

which was assumed to be optimal. Hence there exists an optimal policy that serves customers

in LIFO order. [ |

Lemma 3.2 For any deadline cumulative distribution Fy(.), an a-optimal policy 7 never

rejects a customer while another customer present in the buffer with a longer waiting time

gets served later.
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Proof: Consider an arbitrary input sample path . Let an optimal policy 7 reject customer
J but not customer i where W; < W;. Further assume that i is eventually served under
7. We can construct another policy 7/ which reverses the actions taken on j and ;. The

argument given in case 1 in the proof of Lemma 3.1 can be applied here to establish
Vi(s,8) = V2(s, 8) > 0.

Removal of the conditioning on S yields the desired result. B

As has been shown above, an optimal policy would reject all the customers with waiting
time longer than W; whenever customer J is rejected. Since a BL scheme rejects new arrivals,
it cannot be optimal. If we use a PO scheme instead of a BL scheme so that the altered
policy pushes out the “oldest” customer instead of blocking at every rejection moment, the

queueing performance can be improved. Thus, we have the following corollary which is the

same as in [11] under the FIFO service order.

Corollary 8.1 There ezists a policy using the PO rejection scheme which is better than
the one using the BL scheme regardless of the customer service order. This is true for any

customer deadline cumulative distribution.
The following theorem is a consequence of the above two lemmas.

Theorem 3.1 For customers with a concave deadline cumulative distribution, a stationary

a-optimal policy exists in the class of LIFO-TO policies.
3.2 The a-optimal policy

The rejection scheme of an optimal policy in the LIFO-TO class can be emulated by a delayed
rejection scheme which makes use of Lemma 3.2. Let a rejected customer postpone leaving
the buffer until either it reaches the server in LIFO order or another customer with a smaller
waiting time is rejected. As a result, a delayed rejection always throws away the customer

with the smallest waiting time and thus produces an empty queue. By serving the same set
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of customers all the time, the same performance is achieved under both the original rejection
scheme and the delayed scheme.

If we restrict ourselves to the subset I' C ¥ that schedules customers according to the
LIFO rule, applies a delayed rejection scheme, and satisfies lemma 3.2, then the description
of policy # € T is simplified. In particular, 7 : § — {0,1} and is defined as follows. If
7(s) = 0, then all customers are rejected and s’ = (0). If 7(s) = 1, then the newest customer
is served, no customer is rejected, and s’ is the next state with m arrivals. Equations (5)

and (6) can be modified as shown below to account for the preceding discussion for all state

S.

Ve(s)
= max{ll = B} + X AL = p) eV, 3 21 = )bV (0))

{ max{[l = Fa(wi)] + Ly Ziluy, 1 SRR = pa)t-mabV(s), Va(@)}, s = (w1);

(8)
max{[l — Fy(w1)] + 2, fo(k)p™(1 - Pa) MRV (s), VE(D)}, otherwise.

The optimal policy from I' exhibits the following properties.

Lemma 3.3 If = € I' is an a-optimal policy, then m(w;) = 0 implies (w1 + z) = 0 for all

z > 0.

Proof: Assume that 7 is an optimal policy and m(s) = 0 for s = (w;). This coupled with
(8) implies that [1 — Fy(w;)]+ 3, kzw, 1 fo(B)PT (1 = pa)F Mk V(') < V(0). Consider
state s; = (w; + z),
Vi(se) = max{[l = Fa(wr +2)| + 35 3 filk)pl"(1 - pa)* "k Vo(s"), Vo(0)).
8 k=wl,+1
Since [1 — Fy(wi +2)] < [1 = Fy(w,)] and 7(s) = 0, we have
L=Falwr+2)]+2 3 AkRT(1—p) ™ V(s') < V2(D).
s k=wl,+1

Hence 7(s;) = 0. | N
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Lemma 3.4 If 7 €T is an a-optimal policy, then

T(w1,wa, -+, wy) = m(wy), V (wy, wa, -+, wy,) € S.

Proof: There are two cases according to whether 7(w;) = 1 or 0. We begin with 7(w;) =
1. The proof is by contradiction. Assume that #(wy,--+,w,) = 0. This implies that
T(ws, -+, ws) = 0,7 =2,--+,n as a consequence of Lemma 3.2, i.e., all of the customers in
the queue are removed. The system behaves as if all but the first customer are missing so
that m(w;) = 7(wy,- -+, wn) = 0 which contradicts our original statement.

The second case, 7(w) = 0 is established using an induction argument on n, the number
of customers in the system.
Basis Step: Consider n = 2. We have V*(wy, w;) = V*(w;) = V¥(0). The first equality is
a consequence of Lemma 3.3 and the fact that wy < wy + z, £ > 0. The second equality is
due to the definition of w(w;) = 0. Hence, we conclude that 7(w;,w;) = 0.
Inductive Step: Assume that the hypothesis is true for n = 2,3,.--,1. We establish its
validity for n = [+ 1. If 7(w;) = 0, then m(@y,- -+, W) = 0, if wy < Wy and (dby, -+ ,W;) € S.
This is a consequence of Lemma 3.3 and the assumption of hypothesis here for n = [.
Therefore, V*(wy, ++,wi41) = V*(wy) = V*(0). The first equality is because none of the
older [ customers will ever receive service as shown earlier and the second equality is a
consequence of m(w;) = 0. Hence we conclude that m(wy, -+, wi4;) = 0.

This completes the proof of the lemma. |

Lemma 3.4 claims that an a-optimal policy can make a decision based on w;, the waiting
time of the first customer in the queue. From Lemma 3.3, a critical time threshold exists
for decision making. Under the LIFO service order, this threshold can extended by releasing

the delayed scheme. That is m(s) = 0 when wy > K for a threshold K. Consequently, the

above two lemmas imply the following.

Theorem 3.2 If the deadline cumulative distribution is concave, then the a-optimal policy

is a LIFO-TO policy with a time threshold that is independent of the system state.
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4 Average Reward Problem — Goodput

Consider the problem of maximizing system goodput as defined in (1). The results from
the previous section can be extended to the problem of maximizing goodput through the
application of results in [9]. This extension requires that the model expressed in (4) satisfies
the following three assumptions in space £.

(A1) For every state e and discount f@ctor a, the quantity V*(e) is finite.

(A2) There exists a non-negative L such that V*(e) — Ve(0,0) > —~Lforalleand o. =
(A3) There exists non-negative M., such that V() — V*(f), 0) < M, for every e and «. For
every e, there exists an action a such that ¥, P.o(a)M, < co.

Since only a pseudo action is taken for the states with v # 0, no reward is incurred
until a latter state with an idle server (v = 0) is reached. Therefore, the above assumptions
can be verified if all the states s € S satisfy them. Clearly (A1) holds as we have already
shown that V(s) < 1/(1 — a). Assumption (A3) holds for similar reasons as well. Last,
Assumption (A2) follows from relation (8).

The Theorem in [9] can now be applied to yield the following result.

Theorem 4.1 There exists an optimal stationary policy which mazimizes the goodput defined
in (1). If the customers’ deadlines are concave distributed, this policy is the LIFO-TO policy

with a fized time threshold that is independent of the state of the system,

5 Extensions

In this section, we first find the optimal rejection scheme when only the buffer occupancy is

known to the server. We also consider the extension to a continuous time queuelng system.

5.1 Reduced information structure

Now let us assume that just the buffer occupancy is given to the scheduler rather than

customer waiting times. When the customer service time is geometrically distributed with a




13

probability p, of terminating in the next slot, we can extend the LIFO-TO results above to
LIFO-PO policies.

Since we can compare the customer waiting times at any time instant by their arrival
order, Lemma 3.1 and Lemma 3.2 still apply. The TO rejection scheme cannot be imple-
mented because the customer waiting times are not given. Again an arbitrary policy can be
emulated by a delayed rejection scheme. The rejected customers are tagged and leave the
buffer only at the moment when a customer in the first waiting room is rejected. We denote
the class of policies that schedules customers according to the LIFO rule, applies a delayed
rejection scheme, satisfies Lemma 3.2, and uses only buffer occupancy information by TV,

Associated with customer i,7=1,2,--- is a push-up index n;. At the time that customer
¢ arrives, n; < 0 if the server is idle. Otherwise, n; «— 1. Index n; is then updated whenever
a new customer enters the system while customer i is present. If the number of younger
customers including the new arrival exceeds 7;, then n; «— n; + 1; otherwise it remains
unchanged. Let W;(n) denote the waiting time of customer ¢ with push-up index 7, from the
end of its arriving slot to the time it reaches the head of queue for scheduling in a system
that does not allow rejections. Consider a policy 7 € I that rejects customers. Observe that
if customer ¢ receives service under 7 and its push-up index is n at the time of service, then
its waiting time is statistically identical to W;(n), the waiting time in the no reject system.
Furthermore, if ¢ is rejected as the youngest customer present in the queuve, then again its
waiting time is statistically identical to Wi(n). Last, due to the memoryless properties of

the Bernoulli process, we have
Pr[Wi(n) < k| = Pr[W;(n) < ] Vk 20,0 # j. (9)

This results from the fact that ¢ and j do not simultaneously stay in the system with the same
push-up index. Therefore, W;(n) and W;(n) are independent and identically distributed. We
then are able to omit the subscript : and use W() instead.

The state of the system at a decision epoch under a policy 7 € I becomes now s =

(m1,m2,*+,Mn) where n denotes the number of customers in the queue and 7; denotes the
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push-up index of the i-th youngest customer, n; < - -+ < Mn- Let &' be the set of all feasible
states of the queue, &' = {(n1, 72, , 7)|0 <M <M < -+ <mpsn > 0}. A policy = € I" is
defined as follows, 7 : 8" — {0,1}. If 7(s) = 0, then all customers are rejected. If w(s) = 1,
then the youngest customer is served and no customer is rejected. With m new arrivals in
state s’ = (s1,3), 81 = (1, -+, mh), sy = {m+ Anli £ 1,Ap > 1} when 7(s) =1 and s} = {)

otherwise, equation (8) becomes

V() = max{E[l - Fy(W(n))ly = m]

FX S L= )L - p) et VR (), VA@)), Vs, (10)

8! k=n'4+1
where 5’ = max(m, 7, An — 1)
Using the standard notation from [10], we say that a random variable X is stochastically

larger than another random variable Y, written ¥ <, X, if

E[f(Y)] < E[f(X)), Y increasing f

We have the following stochastic property for W(n).

Lemma 5.1 With geometrically distributed customer service times, W(n) is a stochastically

increasing function of n, i.e.,
W(O) Sst W(l) Sst et Sst W(n) Sst )

Proof: The result follows from a standard coupling argument. First, W) < W(n),n =
1,2, -- since W(0) = 0. Consider a random customer, say ¢, whose push-up indexis n, n =
1,2, ... There exists some customer, j, that arrives while 7 is in the queue (¢ < j) and has
push-up index n — 1. Since j arrives after i, j will depart earlier. Hence Wi(n—1) < W;(n).
Recalling from (9) that W (n) =,; Wi(n) and W(n —1) =, W;(n — 1) completes the proof. W

Under the LIFO service order with the delayed rejection scheme, the following lemma is

similar to Lemma 3.3 and Lemma 3.4 for (5y,7,,---, Nn)-

Lemma 5.2 Ifm € I" is an a-optimal policy, then
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(2) w(m) = 0 implies w(n + h) =0, h > 0.

(22) T(n1, M2,y 7m) = w(m) for all n > 1 and state (M1,7m257 5 7n)-

Proof (1): Assumethat 7 is an optimal policy and 7(s) = 0 where s = (). This coupled with
(10) implies that E[L—Fy(W(n))ln = ml+Xy Lhmr'+1 PS(l"PS)kden(l_pa)k-makva(sl) <
V(D). Consider state sh = (m1 + h),

V¥(sn) = max{E[l — Fy(W(n))ln = n + 4]

£ 3 pl - p) B - po )bV, V().

s k=n'+1
Now, as a consequence of Lemma 5.1, E[1 - Fy(W(n))|n = n + k] < E[1—Fy(W(n))|np = 7).
This relation coupled with the fact that 7(s) = 0 implies that E[1 — Fy(W(q))|n = 1 + h] +
Yo Lips(1 = o) P (1 = pa)* " e*V(s') < V(). Hence m(s) = 0.

Proof (ii): There are two cases according to whether 7(7;) = 1 or 0. We begin with
7(n1) = 1. The proof is by contradiction. Assume that T(m, -+ ,7) = 0. As a consequence,
the last n — 1 customers are rejected (c.f. Lemma 3.2). The system behaves as if all of the
customers but the first one do not exist so that = () = 7 (y, - - - ,7n) = 0 which contradicts
our original statement.

The second case, when 7(n;) = 0, is established using an induction argument on n, the
number of customers in the system.

Basis Step: Consider n = 2. The proof is by contradiction. Assume (m,n2) = 1, i.e.,
V*(m,n2) > V*(0). Now, a consequence of (i) above is that the second customer (with push-
up index 77) will always be rejected. Hencé, the system behaves as if this second customer
does not exist and V*(11) = V*(ny,n2) > V(0) contradicting the assertion that 7{(m) = 0.
Inductive Step: Assume that the hypothesis is true for n = 2,3,--. 1. We establish it for
n = [ + 1 by contradiction. Assume that 7r(771, cmyr) = 1, de, V(e i) > V(o).
It follows from (i) above coupled with the induction hypothesis that all of the remaining
! customers will be rejected. Hence the system behaves as if none of these customers are

present so that V*(n1) = V¥(n,- -+, my1) > V(D) contradicting the original assertion that
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m(m) = 0.
This completes the proof of the lemma, [
The push-up indices are used to estimate the customer waiting times in the above lemma.
Thus, a fixed critical time of a LIFO-TO optimal policy becomes a fixed push-out index.
This in term implies a fixed buffer size threshold for pushing out customers. We have the

following theorem which parallels Theorem 4.1.

Theorem 5.1 Consider only the buffer occupancy is given for decision making. When the
customers’ service times are geometrically distributed, the optimal stationary policy is LIFO-

PO with a fized buffer size used as a rejection threshold.

5.2 The continuous time queueing model

The continuous time queueing model can be derived as a limiting case of the discrete one.
Now suppose that the slot length is decreased without limit and p,, the probability of
customer arrival in every slot, is decreased toward zero in such a way that the average
number of arrivals in one time unit remains constant at value \. Based on this, we claim
that the customer arrival process becomes a Poisson process with an arrival rate A while the
total number of slots in one time unit approaches infinity. In addition, let customer service
times and deadlines become continuous, independent and identically distributed positive
random variables. Thus, a simple non-preemptive M /G/1 queue is considered here. When
only the buffer occupancy is given for decision making, we are interested in the M/M/1
queueing model.

Our objective remains the same as described in (1) while the queueing state space has
changed to an uncountable infinite one. Though Theorem 3.2 is still true for this model by
using the same approach, an optimal queueing policy may not exist in the stationary class
because of the uncountable state space. Therefore, we make the following conjectures:

(z) If the customers’ deadlines are concave distributed, an optimal stationary policy for

the M/G/1 queue is in the LIFO-TO policy class with a fixed critical time.
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(47) Consider the case when only the buffer occupancy is available for decision making.

For the M/M/1 queue, the optimal stationary policy is the LIFO-PO with a fixed buffer size.
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