Proceedinga otpai 222 C o~
' Sysermd = Merthh 18-20,
Prircaton , NT,

Optimal cell admission control in an ATM network node

Leandros Tassiulas, Yao Chung Hung, Shivendra S. Panwar

Department of Electrical Engineering and
Center for Advanced Technology in Telecommunications
Polytechnic University




Abstract

We consider here the problem of optimal cell ad-
mission control in an ATM network node. The objec-
tive is to minimize the average weighted cell rejection
cost in a system with B buffer spaces, independent,
identically distributed cell arrivals and deterministic
service time. We formulate the problem as a Markov
Decision Process and characterize the admission con-
trol policy that minimizes the objective. The optimal
admission policy turns out to be of “multi-threshold”
type.

1. Introduction

One of the main problems arising in the area
of high speed communication networks is the design
of control algorithms for the efficient sharing of the
buffer space in an ATM node. Cells of different traffic
types, as generated by a leaky bucket policing func-
tion or packetized video traffic, arrive at the node and
are stored in a buffer until their transmission. When
a cell finds the buffer full upon arrival, it is discarded
from the system. The cell loss due to buffer over-
flow incurs a degradation in the overall system per-
formance which is highly dependent on the class of the
discarded cells. Certain traffic classes.are more sen-
sitive to cell losses than others. We can reduce the
probability of discarding a cell of those classes due
to buffer overflow, if we block the admission of cells
belonging to classes whose loss has less impact on per-
formance before the buffer is full. We study here how
we can do this in an optimal manner. We formulate
the problem as a Markov Decision Process and charac-
terize the optimal policy using dynamic programming
and sample path comparison arguments.

The space allocation problem in ATM networks has
received considerable attention in the literature [8,1,2,
3,4,5]. Lippman [8] proved the same result as we do
here for an M/M/c queue, Kroner et al [1,2] studied
this problem with a criterion of maximizing the of-
fered load under two loss probability constraints for
a two priorities system. Petr and Frost proposed an
analysis framework for this problem[4] and found an
efficient algorithm for determining the optimal set of
thresholds to minimize the same criterion in a multi-
priority system[5]. They also studied the problem of
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minimizing the average weighted discarding cost per
arrival in a system with a single buffer space[3], i.e.
B =1 as defined in next section. This paper proves
the optimality, in terms of average weighted discard-
ing cost per unit time, of the “multi-threshold” con-
trol policy in a system with buffer size B > 1.

2. The Model

The system is modeled by a single server queue.
The queue has a buffer that can store at most B cells.
This buffer will be called the main buffer in the fol-
lowing. Time is slotted and the transmission of a cell
takes one slot. The cells are classified into L priority
classes. The high priority classes are more sensitive
to cell losses. Without loss of generality we assume
that the priority of class ! is higher than the priority
of class I+1. The priority of a class is reflected by the
cost that is incurred by the blocking of a cell of that
class, as will become clear later. We assume that at
most Br cells of all priority classes may arrive in the
system during one slot. This assumption is consistent
with the structure of knockout-type ATM switches[7]
or a switch with output queueing. All these cells are
stored in a temporary buffer of length By, By the
end of each slot a decision is taken about which cells
will be admitted into the main buffer and where they
are placed within it. The rest of the cells are dis-
carded. We denote by XM(t) the class of the cell
residing at the main buffer position ¢, i = 1,..,B by
the end of slot ¢; XM (¢) = 0 if position 7 is empty
at this time. We denote by X7 (t) the class of the
cell residing at position 7 of the temporary buffer i =
1,..,Bp; XT(t) = 0 if this position is empty at this
time. The vectors XM (t) = (XM(t) : i = 1,.,B),
XT(t) = (XF(@):i= 1,.., Br),represent the main
and temporary buffer occupancies at the end of slot .
Without loss of generality we may assume that in the
temporary buffer, the cells are stored in decreasing
priority order and in contiguous buffer spaces; that is,
for X{'(¢) > 0, i > 1, we have 0 < X;_,(t) < Xi(t).
The temporary buffer at the end of slot ¢ contains
cells that arrived during slot ¢ only. We assume inde-
pendent, identically distributed arrivals from slot to
slot. The vector X(t) = (XM(t), X7(t)) is a natural
state variable and we use the notation {X(t), t >0}
for the stochastic process that describes the evolu-
tion of the system. The state space of that process is
X = XM x XT where XM = {0,1,..,L}® and




AT = {0,1,..,L}57 are the spaces where the vec-
tors XM (t) and X7 (t) lie respectively. All the cells
in the temporary buffer, by the end of each slot ¢,
are either admitted and placed in the main buffer or
rejected. We control the admission of cells in the
main buffer. The control actions taken by the end
of slot ¢ are represented by the admission variables
A;(t) € {0,1,..,B},i = 1,.., Br as follows. We have
A;i(t) = 0 if either position i of the temporary buffer
is empty or the cell stored in that position is blocked
from admission into the system; we have A;(¢) = j if
the cell residing in position ¢ of the temporary buffer
is stored in position j of the buffer. The vector A(t) =
(Ai(t) : ¢ =1, .., By) is called the admission vector at
time ¢. Let A = {0,.., B}?T be the space where it
lies; this is called action space in the following. We
consider only cell admission control policies here and
agsume that the cells of the temporary buffer which
are admitted in the main buffer are placed in con-
secutive positions at the end of the existing queue.
Let Sp(x) be the set of all admission vectors which
satisfy the above assumption when the system is in
state x. At each slot t exactly one cell is transmitted.
The cells in the main buffer are served in a FIFO
manner. Given the state of the system at the end
of slot ¢t and the admission vector at that time, the
main buffer occupancy vector by the end of slot ¢ + 1
is specified deterministically. Let D : ¥ x A — XM
be a function such that X (¢ + 1) = D(X(t), A(2)).
The state of the temporary buffer at the end of slot
t + 1 is determined completely from the arrivals dur-
ing that slot. Under the assumption of i.i.d. arrivals
the evolution of the system is Markovian. Given the
state of the system at time ¢ and the admission vector
at that time, the probability distribution of the state
at t + 1 is completely determined by the function D
and the probability distribution induced by the ar-
rivals on XT. Let p, be the probability that the
temporary buffer has the configuration y, y € A7
at the end of slot £ 4+ 1. The transition probability
Peo(a) = Pr(X(t +1) = x'|X(t) = x,A(t) = a) is
given by

0, ifx™ # D(x,a)
Py, ifle = D(x,a), xlT =Yy, Y€ xT
(1)
An admission policy is any rule for selecting the
admission variables at every time ¢t > 0. This deci-
sion is made on the basis of the past system states
{X(s), t > s > 0} and past decisions. We denote by
Gp the set of policies.
When a cell of class [ is dropped from the system
then a cost ¢; is incurred. We assume that the classes
are indexed in decreasing priority, that is ¢ > ¢141,
l=1,..,L—1. By convention we set ¢g = 0. The total
cost incurred when the system is in state x and the ad-
mission actions that correspond to vector a € Sp(x)

Pt = |

are taken is

Bip
c(x, a) = Z l{a,- = O}Cx'.r, xed,ae SD(X) (2)

i=1

The sum in the right hand side of (2) accounts for
the cost due to cell discarding. The blocking cost in-
curred at time ¢ is denoted as C(t) and is equal to
¢(X(t), A(t)). Our objective is to minimize the aver-
age blocking cost. The long run average cost associ-
ated with a policy g € Gp is defined by

T-1
1
T, ()& 1 B[St
(%) im sup xT[;:o: ®), xex (3)

where EJ[] denotes the expectation with respect to
the probability measure induced by the policy g on
the state process starting in state y. An admission
policy g, is said to be average cost optimal discarding
policy if it minimizes (3) within Gp, i.e., if

Jop(x) S Jy(x), x€X

for any other policy ¢ € Gp. Under our assumptions
about the arrival statistics, the optimization problem
associated with (3) falls within the family of discrete
time Markov Decision Processes (MDP’s). Since the
state space is finite, it is well known that an opti-
mal policy exists and it can be taken in the class of
Markov stationary policies[9]. A stationary policy ¢
is identified by the functions ¢; : & — {0,1,.., B},
i = 1,..,,Br. When the system is controlled under
policy g, at every time ¢t we have A;(t) = gi(X(t))
and in vector form A(t) = g(X(t)). In order to study
the optimization problem associated with the long run
average cost (3) we need to consider first the opti-
mization problem associated with the F-discounted
cost defined next.

The B-discounted cost (0 < B < 1) associated
with a policy ¢ € Gp is defined by

VPR RS pow], xex ()

t=0

where E{[] has the same meaning as in (3). An ad-
mission policy gg is said to be B-optimal discarding

policy if it minimizes (4) within Gp, i.e., if
VE () S V), xeX

for any other policy g € Gp. It is well known[9] that
a (-optimal policy exists and it can be taken within
the Markov stationary policies. The f#-optimal cost
associated with discarding policies is by definition

Vi(x) = inf VP(x)x€X. &)
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It is also well known that since the Markov decision
process under consideration has finite state space, the

f-optimal costs satisfy the dynamic programming equa-

tion

Vﬂ( )= mln {c(x a)+ [ Z Pxx:(a)Vg(x’)}

x'eX
(6)
In view of (1), equation (6) can be written as

Vhx) = min {e(x,a)+8 3 BVE(D(x,a),y).

yexT
(M

The necessary and sufficient condition for a stationary
policy g to be a S-optimal discarding policy is

g(x) = arg rgun {c(x,a)+pB Z P, Vﬁ(D(x a),y)}
YEXT

3. Optimal cell discarding policy

In this section we study the problem of optimiz-
ing (5). We show that the optimal policy makes the
admission decisions based only on the length of the
main buffer and not on the class of packets in it. Fur-
thermore, it is of threshold type with one threshold for
each class of cells. We characterize the optimal policy
for the B-discounted problem. Then by standard ar-
guments[9] the same characterization is obtained for
the average cost optimal policy.

3.1 State space reduction

In this section we show that under the optimal
policy, the admission decisions at time ¢ depend only
on the number of cells in the main buffer and on the
state of the temporary buffer. Based on that, we get
a reduction of the state space. Let I(x) be the number
of cells in the main buffer when the system is in state
x. In the next lemma, we show that the S-optimal
cost has the same value for any two states that cor-
respond to the same temporary buffer state and the
same number of cells in the main buffer.

Lemma 3.1: For any two states xo = (x¥,x%),
x; = (xM,xT) in X such that I(xo) = I(x1) and x] =
x7T, the value function for the A-discounted problem

satisfies
Vp (x0) = VB (x1).

Proof: For any policy ¢ on xg, since xg' =x7¥, we

can find a policy ¢’ on x; where ¢’ discards a customer
in x if, and only if, g discards the same customer in
xT.
Note that after these two decisions, the main buffer
size remains equal for both states and the temporary
buffer occupancy due to next arrival is the same, too.
Thus g’ can act as described above at the next deci-
sion instant.

Therefore, for any g, we have found a ¢’ with the same
value function.

This means V5 (x0) > Vi (x3).

Similarly, we can prove VJ(x1) > VE(xo)
" Vh(xo) = V(x1).

Theorem 3.1: For any two states xo = (x},x7),
X1 = (x1 ,X1) in X such that I(xo) = I(x;) and

x§ = xT, a B-optimal policy gg satisfies

9 (x0) = g5 (x1),

i.e. the B-optimal policies are identical.

Proof: Since g7 (x;) i mcurs the same cost as g7 (xo),
the cost incurred by g (x;) is V& (xo).

From Lemma 3.1, V5 B(x0) = VS b(x1), therefore, g9
acting on x3 a.chieves the optimal,

ie. gh(x0) = gb(x1).

From the above results it is clear that when we
consider cell discarding policies, we may consider the
Markov decision process defined on the state space

= {0,1,.., B} x XT which will be denoted by ¥
in the rest of this section. From now on the state
of the process is x = (4,x7) where i € {0,1,.., B}
and xT € XT. The action space associated with a
state x = (i,xT) is equal to the common action space
Sp(x’) of all states x’ € XM x X7 such that I(x’) = i.
An immediate implication of the above reduction of
the state space is that the placement of the admitted
cell in the main buffer is irrelevant as far as the opti-
mal control problem is concerned. However, to main-
tain the FIFO ordering of cell transmissions, it may
be convenient to consider them as being placed at the
end of the queue. Therefore, the action vector should
indicate for every cell in the temporary buffer whether
it is admitted or not and can be taken to be binary.
Indeed, the action vectors will be considered to be bi-
nary in the following. The transition operator D(-,)
should indicate the number of buffers occupied in the
main buffer for each action vector,therefore, in the
new state space it can be considered to take values in
Z*. If the action vector a € Sp(x) has n nonzero ele-
ments, i.e. n cells are admitted, and x = (i, x7), then
the transition operator is D(x,a) = i+n—1ifi #
0, and D(x,a) =i+nifi=0.

3.2 Reduction of the action space

In this section we show that the reduction of the
state space we achieved in the previous section implies
a reduction in the action space from Byp-dimensional
to one dimensional. More specifically we show that
the optimal action is to accept the first n cells in the
temporary buffer for some value of n. The placement




in the main buffer of the accepted cells is irrelevant.
Consider the action vectors

a, =(aj:a;=1,1<j<n, a; =0, n<j<Br).

Theorem 3.2: The minimum in the right side of
the dynamic programming equation (6) is achieved at
one of the action vectors a,, n = 0,---, By and the
dynamic programming equation can be written as

Br
Vi) = _min {37 Ce
=0,---,Brp Pl ]
+B Y P,VE(1{i > 0}(i+n—1)+1{i = 0}(i+n), y)}.

yexT
(8)
The S-optimal discarding pohcy 9D (x) can be consid-
ered to take values in {0,1,---, Br} and it is

Br

gD(x)—arg gnm { Z er
j=n+l
+8 3 AVALE > 0)(in=D)+1( = 0}4m), ).

yexT
)
Proof: Notice that for any action vector a, and state
x = (¢,x7), we have

C(%,an) + B Y e x Prx:(2n) VA (X')

Br
=y Cur+8 ) PVH(U{i>0}i+n-1)
j=n+1 yeXT

+1{i = 0}(i + n),y). (10)

in view of (10), in order to show (8), it is enough to
show that

mln {C(x a)+ Z Prex! (a)Vg(x )}

a€ESp

x'eX
= _gmn {C(x a,.) + 4 Z Pxx’(an)vﬁ(x,)}
B x/'eX

(11)
For any action vector a with n nonzero elements we
have

C(x,a)+8 Y Pex(a)Vh(x))

x/'eX
> C(x,an) + 7 Z Pxx:(an)Vg(x'). (12)
x/'eX

This is so because first we have D(x, a) = D(x,a,) =
1{i > 0}(:+ n — 1) + 1{i = 0}(i + n), therefore

B E Pxx'(a)VDﬂ(x/) = ﬂ Z Pxx'(an)VDﬂ(Xl).

x'eX x'€X
(13)

Also, as a result of arranging the temporary buffer in
decreasing priority, we can easily see that

C(x,a) 2 C(x,an) (14)

From (13) and (14) we have (12), and that implies

min {C(x,a) + 3 Z Prw(a)Vh (%)}

a€Sp(x) rpy?

2 mm {C(x a,)+ 0 Z Prx/(an)VE (x')}

x'eX
so (11) follows.
3.3 The optimal policy
The characterization of the optimal policy is stated
in Theorem 3.3 after the next lemma.

Lemma 3.3: The value function associated with
the (-discounted problem for discarding policies is
convex in the sense that

VA((5,x7)) = VB((i - 1,xT))
<SVB(G+1,x7) = VE((5,xT)), i=1,.,B-1

Proof: Available upon request.

The following theorem characterizes the 8-optimal
policy.

Theorem 3.3: There exists a B-optimal discard-
ing policy of the following form. There are thresholds
ty >ty > .. > tr, where

t; =arg mln {C;+8 Z Py(Vg(i—2,y)
B} yeAT

~Vi(E~1,y)) >0},

and such that a packet of class j in position k of the
temporary buffer is accepted if and only if

t; > i+ k,
where 7 is the length of the main buffer. That is
u=max{k:i+k'§t,;{}.

Proof: Let us consider the case when u > 0 first.

The control « minimizes the right side of the dynamic

programming equation. Hence the difference of the

right side of (8) evaluated at n =u—~1and at n = u

is

Cur+B8 D Py(VE(i+u=2,4)-Vh(i+u=1,5)) >0
yex”T

We show first that i + u < tyr.
Ifitu> txr, then from Lemma 3.3 and the definition
of the thresholds we get
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0<Cart+B > Py(VE(i+u—2,9)-Vh(i+u—1,3))
yeXT

SCa+B8 Y. PVE(tar = 2,9) = VB(txr — 1,1)).
yexT
The only condition for txr to be the threshold is
Car+8 3 Py(VEGi+u—2,9) - Vi(i+u~1,))
yexT

= x;’: +ﬂ ZA:’T Py(Vg(tx'f - 2’3/) - Vg(txf - 17 y))
3
and tyr = 7+ u. This is a contradiction.

Assume now that there is a o’ > u such that

itu <tyr (15)

Note that Cer, +8 5. Py (VH(i+u' —2,y) - Vh(i+
£ yGXT
u'=1,y)) > 0from Lemma 3.3 and from the definition
of threshold.

We will show that this is a contradiction as well.

Consider the terms

Car+8 Y P(VEGi+1-2y)=VEi+1-1,y)
yexT

20, ugl<d (16)

The non-negativeness of the above terms is implied
from Lemma 3.3 and the fact that the packets in the
temporary buffer are stored in decreasing priority or-
der.

The difference of the right side of (8) evaluated at
n=uand at n = v is

ul

3. Curt+B > P(VB(i+u—1,5)-Vh(i+u'~1,y)
=u+l yexT

ul
I=u+1 yeXT

~VE(i+1-1,9))

From (16) it is clear that all the terms of the sum
are positive, therefore u cannot be the action of the
optimal policy. Note that for u = 0, we are inter-
ested only when {(xT) > 0. The proof is similar to
the above except we begin with a difference of u and
u + 1 in the dynamic programming equation. Also
note that when I(xT) > 0 and ¢ = 0, u = 0 cannot be
optimal.

This completes the proof.
3.4 Average cost optimal policy

We derive the corresponding results for the aver-
age cost case in this section. Specifically, we show that

the optimal policy is of threshold type, too. Before
proving this we state a result from [9] that charac-
terizes the average cost optimal policy of finite state
space Markov Decision Processes.

Theorem 3.4: If the state space of an MDP is
finite and there is some state, call it xg, that is ac-
cessible from every other state regardless of which p-
optimal policy is used, then there exists a bounded
function h(x;),7 > 0, and a constant k such that

k+h(x:) = min[Clxi, 8)+ ) Pegx; (@)h(x;)], i >0,

i=0
‘ 1n
where h(x;) = nli,rlgo (VP (x;) — VP»(x0)]
for some sequence G, — 1.

Also there exists a stationary policy g* such that

k= Jge(x) = n;inJg(x,-), for alli >0

and g* is any policy that, for each state x;, prescribes
an action that minimizes the right side of (17).

Due to the finite state space and the assumption
about arrival statistics in our case, we can find a state
to be the state xo that is accessible from every other
state.

Given the above theorem, in order to show the aver-
age cost optimal policy is of threshold type, we just
need to show that A(7,x7) is convex in i.

We do so in the following,.

Theorem 3.5: The function h(i,xT) is convex in i.

Proof: Let hP»(i,xT) = VAn (i xT) — VPn (x0).
From Lemma 3.3,

RPn(i +1,xT) — hPn(i,xT)

= (VPr(i+ 1,xT) — VFP»(xg))
=(VP(i,x7) = VP (xo))

= VAr(i+ 1,xT) = VP(4,xT)
> VAn(i,xT) — VP (i — 1,xT)
= (VP (i,xT) ~ VPr(xp))

—(VP(i = 1,xT) - VP (x))
= hPn(i,xT) = hPr(i — 1,xT)
By Theorem 3.4, h(i,xT) = n]inolo hP=(i,xT) for some

sequence [, — 1, which implies that A(i,x7T) is con-
vex in .

Summary

We determined the optimal cell admission con-
trol in an ATM network node. We formulated the
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problem as a Markov Decision Process and character-
ized the admission control policy that minimizes an
average weighted cell rejection cost. The optimal ad-
mission policy turned out to be of “multi-threshold”
type. Our results contribute to the design of efficient
implementable protocols for buffer space management
in ATM network nodes.
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