Optimal Buffer Sharing in a Shared Memory Packet Switch or

Demultiplexer

Rajarshi Roy and Shivendra S. Panwar t
Center for Advanced Technology in Telecommunications
Polytechnic University
6 Metrotech Center
Brooklyn, NY 11201

January 7, 1997

Abstract

In this paper we study the problem of the optimal design
of buffer management policies for a shared memory multi-
port device such as an ATM switch or demultiplexer. A
system with cells with two different space priorities is
considered. Qur objective is to find the optimal policy
that minimizes the total weighted cell loss. The problem
of finding the optimal policy within the class of pushout
policies is considered. Using sample path techniques the
search space for the optimal policy is reduced to a sub-
set of pushout policies. A numerical study based on the
value iteration technique is used to further investigate the
structure of the optimal policy.

Keywords: Markov Decision Theory, Sample path
techniques, Shared Memory Switch, Buffer Management,
ATM.

1 Introduction

In a shared memory fast packet switch the entire switch
fabric memory may be shared by all the output port
queues. A similar situation may arise in a shared mem-
ory demultiplexer. In this paper we present the math-
ematical formulation of the optimal buffer management
problem for such devices and present some analytical and
numerical results. Our goal is to design optimal policies
within the pushout class of policies which yield minimum
weighted cell loss.

*This research was supported by the New York State Cen-
ter for Advanced Technology in Telecommunications, Poly-
technic University.

"Tel: 718 260 3740,
panwar@kanchi.poly.edu

Fax: 718 260 3074, e-mail:

There has been considerable amount of prior work in
this area. The queueing analysis of different buffer shar-
ing schemes and their relative merits was analyzed in [1].
"The problem of designing optimal policies for the purpose
of optimizing certain performance criteria is considered in
[2]. They only consider the problem of searching for op-
timal policies within the class where cells can only be
blocked at the entry point of the buffer; dropping cells
once it is accepted in the switch is not allowed. In (3]
pushout is allowed and new arriving cells can push out
cells from the longest logical queue. This policy turns
out to be optimal only for a symmetric system. Guerin,
Cidon, Georgiadis and Khamisy [4] considered a Pois-
son arrival, single loss priority and exponential service
model for sharing memory in a switch with two output
ports. They have established the optimality of a threshold
based pushout scheme using Markov decision theory. They
also calculated the values of those thresholds. For aN
ported system, N > 3, they have results for balanced in-
put and equal service rates at all the output ports. The
non-optimality of the work of Hsaio [3] for the case of
unequal service rates in a two ported system is shown in
their work. For an N-ported system they have results
only for the symmetric case.

Hung et al in [5] have provided optimal policies within
the class of discarding, pushout and expelling policies us-
ing dynamic programming and sample path based tech-
niques. They consider the case of general arrival models
for the case of single output ports.

Hahne and Choudhury [6] have proposed a set of
pushout and buffer sharing rules. They proposed a
back-pressure mechanism for sharing buffers across switch
stages and a pushout scheme for sharing buffers among
different logical queues sharing a common memory. They
have also applied their policy to traffic with multiple pri-
orities. The lowest priority cell at the head of the queue is
selected for pushout. They have applied this work for hi-
erarchical switch system and Banyan based switch system
(6], [7]. Their simulation study reveals that the “Delayed
Pushout” scheme works well under all load conditions.

Here we model the the switch fabric itself as a buffer
of finite capacity which is being shared by several logical
queues, each of which may contain high and low priority
cells. Our model is described in detail below.

1 Br 1 Bum 1 .
G A =,
BT/—) T — s N

Temporary Main Buffer

Buffer

Figure 1: The system model

2 Model and buffer policy de-
scriptions

In our model, the two parts in which total memory of
the switch/demultiplexer B is subdivided are the main
buffer with capacity Bas, and the temporary buffer with
capacity Bp. It is a N ported, slotted system with cells
destined to each output port or server constituting a logi-
cal queue. FIFO order is to be maintained within each of
the logical queues once the cells are accepted in the main
buffer, each of which contains high and low priority cells.
Service time is deterministic and the servers serve one cell
in every time slot if such a cell is available. In one slot at
most By cells can arrive. Clearly for a switch N = Br,
if at each input line at most one cell can arrive in every
time slot. The value of Br in case of a demultiplexer
is dependent on the input line speed. At every decision
epoch cells from the temporary buffer are either admit-
ted in the main buffer, possibly by pushing out some cells
from the main buffer, or dropped.

The class of pushout policies Gp is defined by the fol-
lowing rules: (a) A cell can be expelled from main buffer
only if it is pushed out by another cell in the temporary
buffer and the main buffer is full, (b) A cell from the tem-
porary buffer can be discarded only if the main buffer is
full. (¢) A cell can never be dropped if there is room for
it in the main buffer.

The class of squeeze-out policies Gp, is defined as the
following. Without loss of generality, let us assume that
at every slot a given number of buffer spaces is allocated
to each logical queue. Then under Gp, policies the rules
are to be followed are: (a) Append the cells that are in the
temporary buffer and belong to logical queue n to the end
of the main buffer in the allocated position, high priority
cells first (if switch model) or in FIFO order (if demulti-
plexer model), (b) If the amount of buffer allocated for
logical queue n in the main buffer is full, and there are
cells of that logical queue in the temporary buffer, push
out the low-priority cells starting from those closest to
the head of that logical queue, (c) If all low priority cells

of that logical queue which are in the main buffer are
pushed out, discard all the remaining cells of that logical
queue which are in the temporary buffer.

The amount of buffering allocated to logical queue n
at time ¢ is B, (t). It is evident that B, () < Byy.

3 The MDP problem formulation

The cells are classified into two priority classes. The high
priority classes are more sensitive to cell losses. Without
loss of generality we assume that the priority of class 1
is higher than priority of class 2. The priority of a class
is reflected by the cost that is incurred by the dropping
of a cell of that class. We denote by X, ;() the class of
the cell residing at the z-th place of the n-th logical queue
by the end of the slot [t — 1,#]. Here i = 1,2,..., L,(¢),
where L, (t) is the number of buffer places the logical
queue n occupies at t~. Clearly, 22;1 L,(t) = B.
X1(t), Xa(t)y evenne. , Xn(t) is the vector that can be taken
as a state, where Xy (t) = (Xn:(t) : i = 1,2,...., Ly(2)).
If there is any empty buffer space, it can be arbitrarily
assumed to be part of a particular fixed logical queue
and the value of X, ;(t) corresponding to that is 0. Thus
Xhn,i(t) can take on the values 0, 1 or 2.

We want to find out the policy 7; amongst the class of
pushout policies Gp so that Er, (X ,(Ch - Du(t) + C; -

Dy(t))|any initial state = &) < En, (X o(Ch-Da(t)+C)-
Dy(t))|any initial state =), V73 € Gp, T is the horizon
size. Here, Dy(t) and D;(t) are the number of high and
low priority cells dropped from the system, respectively
up to the end of slot [t —1,¢]. C}, and C) are positive real
numbers, C, > C. Ey, is the expectation when policy =;
is used.

4 Some Results

The objective of theorem 1 which is stated below is to
show that the policy m,, which is optimal in Gp in the
sense that D™ (t) + D; ™ (¢) < DE(t) + DJ (%), V integer
time ¢ € {0,1,2,3, ...} and V7 € Gp such that = # m,,,
and also Dy ™ (t) < D (t), lies in Gp, C Gp. Here, Dy (t)
and Df (t) are the number of high priority and low priority
cells dropped up to time ¢, under policy , respectively.

Note that in a switch model the cells that came in one
time slot are coming from different sources, because an
input line can admit at most one cell in every time slot.
So here the reordering of cells as they are shifted from
the temporary to the main buffer is allowed. But in a
demultiplexer model there can be one high speed source
that generates more than one cell destined to one out-
put port in one time slot. In this case the reordering
of cells while putting them from temporary to the main

buffer is not allowed. Once the cells are transferred to
the main buffer we maintain FCFS policy within every
logical queue, since they may belong to the same virtual
circuit.

Theorem 1: For the same initial state, and the same set
of arrivals, under policies 7 and 73, where m; € Gp,
and 72 € Gp N Gp, we have D;'(t) < Dp?(t) and
Di*(t) + D (t) = Dp2(t) + D2 (¢), Vt € {1,2,...}.

The proof of this theorem depends on Lemma 1.1 which
is stated below.

Lemma 1.1: For any policy 72 € G, N Gp, there exists
a policy 73, which acts as a policy that belongs to Gp, at
t = 1, and if appropriately defined for all integer time ¢ >
1, under the same initial conditions and the same arrivals,
Dy*(t) < Dp2(t) and Dp* (1) + D (¢) = Dp*(t) + D> (2),
Vie {1,2,..}.

The proofs of Lemma 1.1 and Theorem 1 are not in-
cluded for the sake of brevity. The proof techniques are
similar to those employed by us in [5].

Thus for any policy = Gp, by Theorem 1, there ex-
ists a policy w1 € Gp, such that DJ*(t) > D{'I (t) and
Dj*(t) + DI*(t) = Df (1) +DF (1)
0< DJ*(t) - D () = D () - D} (t)
0< Gi(D*(8) = D (1)) < Cu(Df (8) - DJ*(8))
0< G- DI () + Ch - DI () < G+ DY (£) + Ch - DI ()
So, Eﬂ[zi\rzo(ch - Di(t) + Ci - Di(t))|any initial state =

2] < B [XN o (Ch - Da(t) +Ci - Di(t))|any initial state =

5 Some Counterexamples

The following are two counterexamples to sample-path
dominance conjectures. However, these conjectures hold
true in the expected value sense at least for some val-
ues of the load parameters. That we checked using the
numerical procedure outlined in section 6.

5.1 Counterexample 1

This is a counterexample to the conjecture that a high
priority cell should always push out a low priority cell, if
there is any. Here it will be shown that a performance
criteria such as given the previous section cannot be sat-
isfied for every sample path of the input process if such
a policy is followed. We consider a 2x2 switch with four

main buffer places and two temporary buffer places. We
refer to the policy that recommends push out from the
queue with a low priority cell as the conjectured policy
and the other one as the alternative policy. We start with
the same initial state with one low priority cell destined
to output 1, three high priority cells destined to output
2 and two high priority cells in the temporary buffer des-
tined to output 2. Under the conjectured policy the low
priority cell is dropped and one of the high priority cells
are accepted from the temporary buffer. Under the al-
ternative policy both the high priority cells are dropped
from the temporary buffer. Now if two high priority cells
arrive in the next time slot, then at the end of the second
slot we have the same state under both the policies. If in
all the future decision epochs we follow the same actions
for both the policies, then under the alternative policy we
incur one less low priority cell loss.

5.2 Counterexample 2

This is a counterexample of the conjecture that a low pri-
ority cell should never push out a high priority cell under
under a sample path-wise optimal policy. Again, consider
a system with a main buffer size of four and temporary
buffer size of two. The initial state is such that there are
four high priority cells destined to output 2 in the main
buffer and one low priority cell destined to output 1 in
the temporary buffer. Under the conjectured policy we
drop the low priority cell and under the alternative policy
we push out one high priority cell from the main buffer
and admit the low priority cell. Under the conjectured
policy we serve one high priority cell destined to output
2 and under the alternative policy we serve the low pri-
ority cell destined to output 1 and one high priority cell
destined to output 2. If in the next slot two high prior-
ity cells destined to output 2 arrive, then at the end of
that slot we enter the same state under both the policies.
In future decision epochs both the policies can take the
same actions at every slot. So the total cell loss under
the alternative policy will be less.

These counterexamples do show that the inter-queue
push out policy investigation is more complex and the
results are not sample path-wise true but may be true
in the expected value sense. We therefore performed a
numerical study using value iteration since the goal of this
ongoing work is to find out the structure of the optimal
policy using the numerical study as a supporting tool.

6 Numerical study

‘We considered a two-ported shared memory switch mod-
elled as a queue with bounded buffer and two servers each
with constant service rate of one time slot/cell. For the
numerical study we have assumed that at any time slot
0, 1 or 2 cells can arrive with probabilities ag, a; and a5
respectively. The sum of these probabilities is 1. The ar-

riving cells can be routed to one of the two logical queues
with probabilities 1 and bg, by + by = 1. A cell is of high
or low priority with probability ¢, or ¢s (dy or ds), con-
ditioned on the event that the cell is destined to queue 1
(2). We have here ¢; +¢3 = 1 and d; +dz = 1. If we drop
a high priority cell we incur a loss of 1000 and if we drop a
low priority cell we incur a cost of 1 (i.e., C, = 1000 and
C; = 1). Our system has six buffer places of which two are
temporary buffer places. At every decision epoch we have
to make sure that after the cell dropping/pushout decision
is taken we should not be left with more than four cells
in the buffer because at most two cells can come between
this decision epoch and the next one. Theorem 1 of sec-
tion 4 shows that once we have decided to drop cells from
a particular logical queue we start with the low priority
cells at the head of that logical queue. Then we form the
problem in the framework of Markov decision theory and
seek to find out the optimal policy numerically that mini-
mize the total undiscounted expected cost over an infinite
horizon. We use mazies)|VVT1(i) — VN (i) < 0.0001,

where S is the state space and V(i) is the value of the
value function for state ¢ with a horizon size of N, as our
stopping criteria for convergence.

The numerical results reveal that pushout from the
longest queue policy when we have only either high or
low priority cells in the buffer is not optimal for an un-
balanced load. Rather, the logical queues have thresholds
k1 and kg with their sum at least equal to B. Thus if we
need to drop cells we should check which logical queue
has exceeded its threshold, and if the arriving cells be-
long to that one then they get dropped. If it is the other
one then these new cells are accepted and cells are pushed
out from the other logical queue. For example, for a bal-
anced load when there are 3 cells of high priority for both
the logical queues numerical computation shows that we
should drop one from each logical queue. But for case of
70 percent of the incoming traffic going to output port
1, we observed that the optimal policy dropped 2 cells
from logical queue 1. This clearly shows the change in
the value of thresholds with the offered load.

Numerical computations did show that we have to drop
a low priority cell of either logical queue whenever we
need to admit a new arriving high priority cell. So our
counterexamples which are sample-pathwise true for some
sample paths do not hold in an expected sense, at least
for the values of the parameters we consider.

If two states has the same number of high and low pri-
ority cells for both the logical queues but in the first state
the low priority cells are ahead in their logical queues then
the value of V¥ (5) for the first state will be higher than
that of the second state. This result is in accordance with
Theorem 1, which states that optimal policy within the
class Gp lies in Gp, C Gp.

Other structural properties of the optimal policy are
being currently investigated.

References

[1]

[6]

F. Kamoun and L. Kleinrock, “Analysis of Shared
Finite Storage in a Computer Network Node Envi-
ronment Under General Traffic Conditions,” IEEE
Trans. on Communications, Vol. COM-28, No. 7,
July 1980.

G. J. Foschini and B. Gopinath, “Sharing Memory
Optimally,” IEEE Trans. on Communications, Vol.
COM-31, No. 3, March 1983.

S. X. Wei, E. J. Coyle and M. T. Hsiao, “An Opti-
mal Buffer Management Policy for High Performance
Packet Switching,” IEEE GLOBECOM’91, Vol. 2,
pp. 924-928, December, 1991,

L. Cidon, L.Georgiadis, R. Guerin, A. Khamisy, “Op-
timal buffer sharing,” IEEE JSAC, September 1995,
vol 13, No. 7, pp. 1229-1240.

L. Tassiulas, Y. C. Hung and S. S. Panwar, “Opti-
mal Buffer Control During Congestion in an ATM
Network Node,” IEEE/ACM Transactions on Net-
working, August 1994, Vol. 2, No. 4, pp. 374-386.

Abhijit Choudhury, Ellen L. Hahne, “Buffer Man-
agement in a Hierarchical Shared Memory Switch,”
IEEE INFOCOM’94, Vol. 3, pp. 1410-1419, June,
1994.

Debasis Basak, Abhijit K. Choudhury, Ellen L.
Hahne, “Sharing Memory in Banyan-based ATM
Switches,” Preprint.

