
314 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 4, AUGUST 1994

Optimal Buffer Control During
Congestion in an ATM Network Node

Leandros Tassiulas, Member, IEEE, Yao Chung Hung, and Shivendra S. Panwar, Member, IEEE

Abstract-In this paper we study the problem of optimal buffer
space priority control in an ATM network node. The buffer of
a transmission link is shared among the cells of several traffic
classes waiting for transmission through the link. When the
number of cells to be stored in the buffer exceeds the available
buffer space, certain cells have to be dropped. Different traffic
classes have different sensitivities to cell losses. By appropriately
selecting the classes of cells which are dropped or blocked in case
of overflow, we can have the more sensitive classes suffer smaller
cell losses. Depending on the control that we have on the system,
three classes of policies are distinguished. In each one, policies
that schedule the buffer allocation in some optimal manner are
identified.

I. INTRODUCTION

temporary buffer main buffer

Fig. I . The system model.

system and they are placed in the temporary buffer which has
length B,. These cells may belong to different traffic types.
This assumption is consistent with the structure of knockout-
type ATM switches [14] or a switch with output queueing. At
the end of each slot the cells from the temporary buffer are
either placed in the main buffer or dropped from the system.
Depending on the available control we have over the dropping
of cells from the temporary or the main buffer and over the
placement of the cells in the main buffer, we will distinguish
three classes of policies. In all the policies considered it is
assumed that the cells which enter the main buffer in every

cells is not allowed. Hence, the FIFO discipline is preserved
and the cells are delivered in order. This property is essential
in

The first class is that of discarding policies. A discarding
policy cannot modify the state of the cells which are already
in the main buffer. It cap only control the admission of the
cells from the temporary buffer, by blocking some if necessary,
and the placement of the admitted cells in the main buffer. We
show that the optimal discarding policy is of “multithreshold
type.” That is, for each priority class there is a threshold, and if
the number of cells in the main buffer exceeds that threshold,
the cells of that class are blocked from admission. The policy
is optimal in the sense that it minimizes the long run average
blocking cost where a cost is associated with each cell that
reflects the loss sensitivity Of its ‘lass.

The second class of policies considered are the pushout
policies. A pushout policy is allowed to expel cells from the
main buffer in Order to make for cells in the temporary
buffer which cannot enter the main buffer because it is full.
A cell from the temporary buffer cannot be blocked from
admission to the main buffer if there is space in the main
buffer. We obtain the optimal pushout policy, which we call the
squeeze-out policy, in a system with two priority classes. That

NE of the main problems arising in the area of high
speed communication networks is the design of control

algorithms for the efficient sharing of the buffer space in an
ATM node. Cells of different traffic types amve at the node
and are stored in a buffer until their transmission. Cells of

function which marks excessive traffic cells at the source
network interface or by an encoding scheme which creates
cells with different priorities [2]. When a cell finds the buffer
full upon it may be discarded before admission into
the system. The cell loss due to buffer overflow incurs a
degradation in the overall system which is highly
dependent on the type of the discarded cells. certain traffic
types are sensitive to potential cell losses than others.
we can reduce the probability of discarding a loss-sensitive
cell due to buffer overflow if we block the admission of less
loss sensitive we may also consider expelling less loss
sensitive cells from the buffer. In this paper we study how we
can do this in an optimal manner.

we consider a single outgoing link and the corresponding
dedicated buffer in a network node. The system is modeled
by a single queue (~ i ~ . 1). ne queue has a buffer
that Store B cells; this is called the main buffer in the
following. Time is slotted and the transmission of a cell takes
one slot. During one slot at most B, cells may arrive to the

Manuscript received January 17, 1993; revised August 3, 1993 and May

Cidon. This work was supported by the Center for Advanced Technology in
Telecommunications, Polytechnic University and by the NSF under Grants
NCR-8909719, NCR-9115864, and NCR-9211417. This paper was presented

0
different types may be generated by a l e k y bucket policing ’lot join the end Of the queue and rearrangement Of

circuit

2, 1994; approved by IEEEIACM T R A N S A ~ I O N S ON NEWORKING Editor I.

in part at the Proceedings of the 1992 Conference on Infomation Sciences Policy places the in the main buffer, high priority first.
and Systems, Princeton, NJ, March 18-20. 1992. If the buffer is full and there are cells in the temDorarv buffer,

1 .

The authors are with the Department of Electrical Engineering and Center
for Advanced Technology in Telecommunications, Polytechnic University,
Brooklyn, NY 11201 USA.

then the low-prio&y cells are pushed out of the main buffer
starting from those closest to the head of the queue. Notice that

IEEE Log Number 9404837. low-priority cells are dropped to make space for other low-

10634692/94$04.00 0 I994 IEEE

TASSIULAS et al.: OPTIMAL BUFFER CONTROL IN AN ATM NETWORK NODE

0 0 0 0 0 0 0 0

315

0 0 0

0 . . . 0 . 0 0

priority cells that are appended to the end of the queue. The
squeeze-out policy minimizes the blocking probability of the
high-priority (loss sensitive) class among all pushout policies.

The third class of policies considered are the expelling
policies. Expelling policies are allowed to expel cells from
the main buffer or block cells in the temporary buffer from
admission into the main buffer irrespective of the system state.
Properties of the optimal expelling policy are obtained that
narrow down the set of candidate policies considerably in a
system with two classes. More specifically, we show that, like
in the case of the squeeze-out policy, the cells are placed in
the main buffer high priority first and low-priority cells are
pushed out, starting from the head of the queue, if there is no
space. In addition to that, the optimal expelling policy may
drop low-priority cells even if the main buffer is not full, but
only if the low-priority cell(s) is (are) at the head of the queue.

Clearly, an expelling policy has more control over the
system than discarding and pushout policies. In other words,
the class of expelling policies contains the discarding and
pushout policies as subclasses. Policies of different classes
have different degrees of implementation difficulty. For one
approach that allows for the implementation of some of the
policies considered in this paper, see [3].

The problem of sharing the buffer space among several
competing traffic streams has attracted considerable attention
in the past. Several strategies for buffer sharing, called space
priority access methods, have been proposed and analyzed.
Petr and Frost in [lo] distinguish several classes of buffer
sharing policies based on the time instances at which control
actions can be taken and on the groups of cells that can
be discarded. The three classes of policies studied here fall
within that framework. Discarding type policies have been
studied by Petr and Frost in [9], [l l] . In [9] the problem of
minimizing the average discarding cost has been considered in
a system with an arbitrary number of priority classes and one
buffer space. In [111 the problem of maximizing the offered
load over all multithreshold type policies under constraints
on the losses of each class is considered. Here we determine
the optimum discarding policy for systems with buffers of
arbitrary length.

The pushout scheme is another buffer sharing strategy
that has been studied extensively in the past. An important
component of a pushout strategy is to decide which cell to
pushout of the buffer in order to make space for an incoming
cell. Kroner and Kroner et al. have analyzed the performance
of several buffer sharing schemes, in [6], [7] including a
pushout policy which expells low-priority cells starting from
those closest to the tail of the queue, i.e., the youngest low-
priority cells. They obtained the cell loss probabilities under
different buffer sharing schemes for a two class M / G / l / N
system. In our work we identify two important properties of
the optimal pushout policy. It is better to push out the oldest
low-priority cell from the buffer and it is better to push out
a low-priority cell from the buffer in order to make space for
another cell, irrespective of its priority. These two properties
uniquely characterize the optimal pushout policy, called the
squeeze-out policy, as we show in Section 111-A. The class
of expelling policies has been identified in [lo] but they
haven't been analyzed. Lippman [8] showed that the optimum
discarding policy for an M f M f e/ K queue (with no temporary
buffer) is of multi-threshold type. Policies to meet both cell
delay and loss requirements were considered in [11, [5].

The paper is organized as follows. In Section I1 the dis-
carding policies are analyzed. The pushout and the expelling
classes of policies are analyzed in Section 111-A and -B,
respectively. In Section JV we discuss some of the implications
of our results. In Section V numerical results are reported. In
Section VI we discuss some extensions to our work and open
problems.

11. DISCARDING POLICIES

The cells are classified into L priority classes. The high-
priority classes are more sensitive to cell losses. Without loss
of generality we assume that the priority of class 1 is higher
than the priority of class 1 + 1. The priority of a class i s
reflected by the cost that is incurred by the blocking of a
cell of that class. As we mentioned earlier, at most BT cells
of all classes arrive into the system during every slot and
they reside in the temporary buffer. By the end of each slot
a decision is taken regarding which cells will be admitted
in the system and where they are going to be placed in
the buffer. The rest of the cells are discarded. We denote
by X y (t) the class of the cell residing at the main buffer
position i, i = 1, ..,B by the end of slot t; X"t) = 0
if position i is empty at this time. We denote by X T (t)
the class of the cell residing at position i of the temporary
buffer i = 1, .., BT; X T (t) = 0 if this position is empty
at this time. The vectors X"(t) = (X y (t) : i = 1, . . ,B) ,
X T (t) = (X T (t) : i = 1, .., BT), represent the main and
temporary buffer occupancies at the end of slot t. Without loss
of generality we may assume that in the temporary buffer, the
cells are stored in decreasing priority order and in contiguous
buffer spaces; that is, for X T (t) > 0, i > 1, we have
0 < XEl (t) 5 X T (t) . The temporary buffer at the end of slot
t contains cells that arrived during slot t only. The ordering
of the cells in the temporary buffer is assumed only for a less
cumbersome discription of the optimal discarding policy, since

IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 4, AUGUST 1994 316

in this manner the control action can be specified by a single
variable. The cells which are admitted can be placed in any
order in the main buffer since, as it is shown later, the ordering
of the cells in the main buffer is irrelevant to the performance
of the optimal discarding policy. This is not the case for the
pushout and expelling policies where the order of the cells in
the main buffer is important. The implications of this property
for these two classes of policies are discussed in Section 111.
We assume independent identically distributed arrivals from
slot to slot. The vector X(t) = (X M (t) , X T (t)) is a natural
state variable and we use the notation { X (t) , t 2 0) for the
stochastic process that describes the evolution of the system.
The state space of that process is X = X M x X T where
X”‘ = {0,1, .., L } B and X T = {0,1, .., L}BT are the spaces
where the vectors X”(t) and X T (t) lie respectively.

All the cells in the temporary buffer, by the end of each slot
t , are either admitted in the system and placed in the main
buffer or rejected. We control the admission of cells in the
main buffer. The control actions taken by the end of slot t are
represented by the admission variables A, (t) E { 0, 1, . . , B} ,
i = 1. .., BT as follows. We have A,(t) = 0 if either
position i of the temporary buffer is empty or the cell stored
in that position is blocked from admission into the system;
we have A,(t) = j if the cell residing in position i of the
temporary buffer is placed in position j of the buffer. The
vector A(t) = (A,(t) : i = 1, ..,BT) is called the admission
vector at time t in the following. Let A = (0. .., be the
space where it lies; this is called action space in the following.
We assume that the cells of the temporary buffer which are
admitted in the main buffer are placed in consecutive positions
at the end of the existing queue. Let S(x) be the set of all
admission vectors which satisfy the above assumption when
the system is in state x.

At each slot t exactly one cell is transmitted. The cells in
the main buffer are served in a FIFO manner. Given the state
of the system at the end of slot t and the admission vector at
that time, the main buffer occupancy vector by the end of slot
t + 1 is specified deterministically. Let D : X x A + X”
be a function such that X M (t + 1) = D (X (t) , A (t)) . The
state of the temporary buffer at the end of slot t + 1 is
determined completely from the arrivals during that slot. Under
the assumption of i.i.d. arrivals the evolution of the system is
Markovian. Given the state of the system at time t and the
admission vector at that time, the probability distribution of
the state at t + 1 is completely determined by the function
D and the probability distribution induced by the arrivals on
X T . Let p , be the probability that the temporary buffer has
the configuration y, y E X T at the end of slot t + 1. The
transition probability Pxxf(a) = P r (X (t + 1) = x’lX(t) =
x,A(t) = a) is given by

An admission policy is any rule for selecting the admission
variables at every time t 2 0. This decision is made on the
basis of the past system states {X(s), t 2 s 2 0} and past
decisions. Let G be the class of all admission policies such

that the admission vector A(t) belongs to the set S (X (t)) at
all t .

When a cell of class 1 is dropped from the system then a
cost cl is incurred. We assume that the classes are indexed
in decreasing priority, that is ci > ci+1, 1 = 1, .., L - 1. By
convention we set CO = 0. The total cost incurred when the
system is in state x and the admission actions that correspond
to vector a E S(x) are taken is

BT
c (x , alef l { a i = o}c,T , x E X, a E ~ (x) . (2)

i=l

where l{ai = 0} = 1 if a; = 0, 0 otherwise.
The blocking cost incurred at time t is C (t) =

c (X (t) , A@)). Our objective is to minimize the average
blocking cost. The long run average cost associated with a
policy g E G is defined by

~ T-I

where E:[.] denotes the expectation with respect to the proba-
bility measure induced by the policy g on the state process
starting in state x. An admission policy go is said to be
average cost optimal discarding policy if it minimizes (3)
within G, i.e., if

Jg, (XI I J g (4 , x E X

for any other policy g E G. Under our assumptions about
the arrival statistics, the optimization problem associated with
(3) falls within the family of discrete time Markov Decision
Processes (MDP’s). Since the state space is finite , it is well
known that an optimal policy exists and it can be taken in
the class of Markov stationary policies [12]), that is policies
for which the control actions are time-invariant functions of
the state only. A stationary policy g is identified by the
functions g; : X + {0,1, ..,B}, i = 1, ..,BT. When the
system is controlled under policy g, at every time t we have
A , @) = g ; (X (t)) and in vector form A(t) = g (X (t)) .
In order to study the optimization problem associated with
the long run average cost (3) we need to consider first the
optimization problem associated with the /?-discounted cost
defined next.

The /?-discounted cost (0 < /? < 1) associated with a policy
g E G is defined by

00

v;(X)%fE:[C/?tC(t)],X E X (4)
t = O

where Eg[.] has the same meaning as in (3) . An admission

minimizes (4) within G, i.e., if

policy go B is said to be P-optimal discarding policy if it

for any other policy g E G. It is well known [12] that
a /%optimal policy exists and it can be taken within the

TASSIULAS et al.: OPTIMAL BUFFER CONTROL IN AN ATM NETWORK NODE 377

3 2 . . .
value function for the P-discounted problem satisfies

Markov stationary policies. The P-optimal cost associated with
discarding policies is by definition

vP(x) = inf v,”(x),x E X.

It is also well known that since the Markov decision process
under consideration has finite state space, the P-optimal cost
is achieved for some policy and it satisfies the dynamic
programming equation

gEG

In view of (l), (5) can be written as

VP(X) = min {c(x,a) + P pyVP(D(x,a),y)}.
aES(x)

Y E S T

The necessary and sufficient condition for a stationary policy
go to be a P-optimal discarding policy is

g”x) = arg min {C(X, a) + P P,VP(D(X, a), Y)) .
a€S(x)

Y E X T

A. Ovtimal Cell Discarding Policv ”

In this section we study the problem of obtaining the optimal
discarding policy. We show that the optimal policy makes the
admission decisions based only on the length of the main
buffer and not on the class of packets in it. Furthermore, it
is of threshold type with one threshold for each class of cells.
According to the optimal policy (Fig. 3), cells are admitted
in the main buffer high-priority cell first. If the queue length
exceeds the threshold ti and the next cell to enter the main
buffer is of class t i , then the rest of the cells are discarded. We
characterize the optimal policy for the P-discounted problem.
Then by standard arguments [121 the same characterization is
obtained for the average cost optimal policy.

1) State Space Reduction: In this section we show that the
decisions of the optimal policy depend only on the number
of cells in the main buffer and on the state of the temporary
buffer. Based on that, we get a reduction of the state space. Let
l(x) be the number of cells in the main buffer when the system
is in state x. In the next lemma, we show that the @optimal
cost has the same value for any two states that correspond
to the same temporary buffer state and the same number of
messages in the main buffer. The proof of the lemma is in
the appendix.

From the above results it is clear that when we consider
cell discarding policies we may consider the Markov decision
process defined on the state space X = {0 ,1 , .., B } x X T
which will be denoted by X in the rest of this section.

From now on the state of the process is x = (i , x’) where
i E {0,1, .., B } and xT E X’. The action space associated
with a state x = (i , ~ ’) is equal to the common action space
S(x/) of all states x’ E X M x X’ such that l(x’) = i .
An immediate implication of the above reduction of the state
space is that the placement of the admitted cell in the main
buffer is irrelevant as far as the optimal control problem is
concemed. Therefore, the action vector should indicate for
every cell in the temporary buffer whether it is admitted or
not and can be taken to be binary. Indeed, the action vectors
will be considered to be binary in the following. The transition
operator D(., .) indicates the length of the main buffer in
the new state space and it takes values in Z+. If the action
vector a E S(x) has n nonzero elements and x = (i,xT)
then the transition operator is D(x,a) = i + n - 1 if i #
0, and D(x,a) = i + n if i = 0.

2) Reduction of the Action Space: The reduction of the
state space that was obtained in the previous section implies
a reduction in the action space from &--dimensional to one
dimensional. More specifically we will show that the optimal
action is to accept the first n cells in the temporary buffer
for some value of n. The placement in the main buffer of the
accepted cells is irrelevant. Consider the activation vectors

a, = (a j : aj = 1, 1 5 j 5 n, uj = 0, 71 < j 5 BT).

The following theorem is proved in the appendix.
Theorem 2.2: The minimum in the right-hand side of the

dynamic programming equation (5) is achieved at one of
the action vectors a,, n = 0, . . ., BT and the dynamic
programming equation can be written as

378 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 4, AUGUST 1994

The @-optimal discarding policy g p (x) can be considered to
take values in { O , l , . . ., BT} and it is

+p p y V f l (l { i > O } (i + 7L - 1) + l { i = O } (i + n),y)}.
Y E X T

(7)

B . The Optimal Policy

The characterization of the optimal policy is given after the
next lemma. Two properties of the cost function are stated.
First that it is increasing with the queue size of the main buffer,
or in other words that more cells are discarded in the future if
there are more cells in the main buffer initially. Second, that
the cost function is convex, that is the increase of the number
of discarded cells in the future, as we go from initial main
buffer queue size i to size i + 1, increases with i. Roughly
speaking, the rate of increase of the cost function with respect
to i is increasing as well.

Lemma 2.3: The value function associated with the 0-
discounted problem for discarding policies is nondecreasing
and convex in i

V P ((i , X T)) 5 vq i + l , X T)) , i = 0, . . . , B - 1

V " (2 , X T)) - V P ((2 - l , X T)) 5 vq i + l , X T))
- V P ((i , x T)) , i = 1, ..,B - 1. (8)

The proof of the lemma is cumbersome and is omitted here.
It can be found in the technical report version of the paper
[13]. A consequence of the convexity of the cost function is
that the optimal policy will be of threshold type, as is stated
rigorously in Theorem 2.3. This can be argued intuitively as
follows. A cell of class j is accepted in the main buffer if the
increase in the cost due to future discarded cells because of
the admission of the current cell is smaller than the cost cj
that will be incurred by the discarded cell. Now the convexity
of the cost function implies that the increase in the discarding
cost is increasing with the main buffer queue size. Therefore
if a cell of class j is discarded when the main buffer queue is
equal to i , it will be discarded for larger main buffer lengths
as well. The proof of the following theorem is in the appendix

Theorem 2.3: There exists a ,&optimal discarding policy
g B (i . y) of the following form. There are thresholds tl 2
t2 2 .. 2 t L defined by

-V"i - 1,y)) L O.} (9)

In the case of ties, tj is the maximum i which achieves
the minimum above. A cell of class j in position k of the
temporary buffer is accepted if and only if

ti 2 i + k

where i is the length of the main buffer. That is

gP(i ,xT) = max{k : i + IC I t,.}.

C. Average Cost Optimal Policy

Using standard techniques from the theory of Dynamic
Programming we can characterize the optimal policy for the
average cost case. The following theorem can be proved
easily based on the results we obtained for the @-discounted
problem and some results that relate the P-discounted and the
average cost problem in [12]. The intuitive explanation of the
thresholds is the same as for the P-discounted optimal policy.

Theorem 2.4: There exists an average cost optimal discard-
ing policy go of the following form. Consider the thresholds
tl 2 t2 2 . . . 2 t , defined by

where h (i , x) = lim (V p n (i , x) - VplL(O,O)) for some
sequence On + 1 and in the case of ties, t j is the maximum
i which achieves the minimum above. A cell of class j in
position k of the temporary buffer is accepted if and only if

11-Dc:

t j 2 i + k

where z is the length of the main buffer. That is

g D (i , x) = max{k : i + k 5 t,;}.

We outline the steps of the proof of the Theorem 2.4.
It is shown first that lim (V o n (i , x) - V p - (O , O)) exists,
therefore h(i , x) is well defined. Then it is shown that h(i , x)
is increasing and convex in i using Lemma 2.3. The proof of
the theorem is concluded in the same manner as the proof of
Theorem 2.3.

n-03

111. CELL EXPELLING POLICIES

In the following two sections we study the pushout and the
expelling policies. The main difference between these policies
and the discarding policies is that cells in the main buffer can
be dropped (expelled) from the main buffer under the pushout
and expelling policies. The class of pushout policies contains
all policies for which a cell is dropped only if the buffer is full.
Any policy in the pushout class minimizes the total cell loss
over all priority classes. Different pushout policies achieve a
different apportioning of the individual losses of each priority
class. In Section 111-A we obtain the policy that minimizes
the cell loss of the high-priority class in a system with two
priority classes. This policy, that we call squeeze-out, achieves
the minimization of cell losses in systems with arbitrary cell
arrival processes.

The class of pushout policies is a subclass of the more
general class of expelling policies. Policies of the latter class
are allowed to expel or discard a cell at any time, even before
the buffer is full. By dropping cells while the buffer is not full,
the total cell loss is increased. However a smaller loss of the
high-priority class may be achieved, than that achieved by the
squeeze-out policy. In Section 111-B, we identify the class of

379 TASSIULAS el al.: OmIMAL BUFFER CONTROL IN AN ATM NETWORK NODE

policies GEo with the following property. For any arbitrary
expelling policy g, there is a policy g' E GEo, that has a total
cell loss less than or equal to that of g and a high-priority cell
loss less than or equal to that of g. Therefore for any practical
purpose we can search for an expelling policy within GEo.
The class GEo is considerably more restricted than the class
of expelling policies. Unlike our study of discarding policies,
the results in this section are restricted to systems with two
priority classes only.

We keep the notation that we introduced in Section I1 in
this section as well. Nevertheless we prefer to specify the
class of policies we consider and the optimal policies in
words rather than mathematically in this section, since the
first description is precise enough and we don't need the
mathematical description in the proof of the results.

A . Pushout Policies

obey the following rules.
The class of pushout policies GP contains all policies which

a) A cell can be expelled from the main buffer only if it
is "pushed out" by another cell in the temporary buffer
which cannot enter the main buffer because it is full.

b) A cell from the temporary buffer can be discarded only
if the main buffer is full.

The following policy is optimal in GP.
Squeeze-out Policy r P 0 :

1) Append the cells from the temporary buffer to the end
of the main buffer, high-priority cells first.

2) If the main buffer is full, and there are cells in the
temporary buffer, push out the low-priority cells starting
from those closest to the head of the queue.

3) If all the low-priority cells in the main buffer are pushed
out discard all remaining cells in the temporary buffer.

The policy 7 r P o is optimal within GP in a very strong sense.
It minimizes at every slot t the number of high-priority cells
lost. Furthermore, this holds for arbitrary arrival pr_ocesses and
not only for i.i.d. arrivals. Let D h (t) , D ' (t) and Dh(t) , D ' (t)
be the numbers of dropped cells by the end of slot t of the high
and low-priority classes, respectively, under policy TPO and for
an arbitrary policy ir E GP. Then we have the following.

Theorem 3.1: When the system starts from the same initial
state under policies 7rP0, ir and the amvals are identical under
the two policies we have

D"t) 2 D (t)
D"t) + D y t) = D (t) + B h (t) , t = 1 , 2 , . ' ..
The intuition behind the optimality of the squeeze-out policy

is the following. The total number of cells that go through
the queue is the same for all policies of the pushout class.
The policy that maximizes the throughput of the high-priority
class, minimizes the throughput of the low-priority class.
The squeeze-out policy does exactly this by maximizing the
availability of low-priority cells for discarding from the main
queue. The proof of the theorem relies on the following lemma
and is included in the Appendix together with the proof of the
lemma.

Lemma 3.1: For any policy ir E GP there exists a policy
7r1 which acts identically to T P O at t = 1 and is appropriately

defined at t > 1 such that if the system starts from the same
initial state under both policies, and the arrival processes are
identical, then we have

D y t) 2 B'"(t)

D y t) + D y t) = B'"(t) + B h (t) , t = 1, ' . . (10)

where D""(t), DIh(t) are the numbers of dropped cells of low
and high priority, respectively, by the end of slot t under policy
Tl .

B. Expelling Policies

The class of expelling policies GE has as members all
policies that append the new cells from the temporary buffer to
the end of the queue and do not rearrange the cells in the main
buffer. An expelling policy is allowed to expel or block any
cell in the main or temporary buffer respectively, irrespective
of the state. Hence the only requirement an expelling policy
should satisfy is to preserve the FIFO order. Other than that it
can drop cells arbitrarily. Clearly the class of expelling policies
is larger than the previous two.

We were able to obtain properties of the optimal policy that
narrow down the class of policies that contains the optimal
policy significantly. We have shown that an optimal policy
within GE should act according to the following two rules.

1) The cells are placed from the temporary buffer to the
main buffer, high-priority cells first. If they do not fit,
then low-priority cells are expelled starting from those
closest to the head of the queue.

2a) If the cell at the head of the queue is of high priority,
then it is served.

2b) If the cell at the head of the queue is of low priority,
then either that cell is served, or all the low-priority
cells from the head of the queue until the high-priority
cell closest to the head of the queue are expelled and
that high-priority cell is served.

Note that the two rules above characterize the optimal
actions completely for some states and in general up to a
binary decision of whether all low-priority cells at the head
of the queue are dropped or none of them. As in the case of
pushout policies, the above result holds for arbitrary arrival
processes. Let GEo be the class of policies which satisfy
the above two rules. We claim that the optimal policy within
GE should belong to GEo. More specifically we show the
following.

Theorem 3.2: For every policy 7r E GE there exists a policy
ir E GEo such that if the system starts from the same initial
state under the two policies, and the amval process is identical
under the two policies, we have

P (t) 5 oh@),

D h (t) + D l (t) 5 D h (t) + D ' (t) t = 1,2;. . , (11)

where oh, B'(t) is the number of lost cells of high and low
priority, respectively, under ir and similarly for Dh (t) , Dl (t)
under T .

380 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 4, AUGUST 1994

Note that in the theorem, oh@) + o,"(t) 5 Dh(t) + D'(t)
impjies D'(t) - D'(t) 5 Dh(t) - Bh(t) , which means even
if D'(t) > D'(t) , the difference between them will be less
than or equal to that between Dh(t) and Bh(t). Therefore,
Theorem 3.2 implies the discarding cost in ir will be less than
or equal to that in T . The proof of the theorem relies on the
following lemma and is similar to that of Theorem 3.1. For a
proof of the lemma the reader is referred to [131.

Lemma 3.2: For every policy IT E GE there exists a policy
?TI, which acts according to rules 1 and 2 at slot 1 and is
appropriately defined for 1 = 2 , 3 , . . . , based on T , such that
if the system starts from the same initial state and the arrival
process is identical under the two policies, then we have

P (t) 5 Dh(t) ,

P (t) + D"(t) 5 Dh(t) + D,"(t) t = 1,2 , .

where Dlh(t) , D"(t) is the number of lost cells of high and
low priority, respectively, under IT^ .

Iv . INTERPRETATION OF THE RESULTS

The performance of a buffer allocation policy as far as
the losses is concerned is completely characterized by the
vector (P I , . . , p k) of the blocking probabilities p , of each class
z = 1, .., k . If the blocking probability vectors (p l , . . , p k)

and (PI, ..,p;C) under two policies T and ir are related as
p , 5 pz , z = 1, . . , k then policy T is better than policy ir under
most performance criteria regarding losses. If the blocking
probability vectors of two policies are not related in the sense
that one is not strictly larger than the other, then the two
policies are not directly comparable, and one may be preferable
than the other depending on which traffic class has higher
priority.

In Fig. 7 the region ABCD'EFO represents the blocking
probabilities achievable by any policy in the class of expelling
policies, while the region AA'O'F'FO represents the region
of achievable blocking probabilities from policies of the dis-
carding class. Any blocking probability pair on the lower
boundary AA'O'F'F of the discarding policies region has
the property that is not strictly larger than any other blocking
probability pair achievable by a discarding policy. When we
are constrained in the discarding class of policies clearly we
would like to operate the system at some point of the curve
AA'O'F'F. Any discarding policy that is optimal with respect
to a linear cost like the one considered in Section I1 will lie on
the line AA'O'F'F, otherwise there will exist another policy
with better performance with respect to that linear cost. The
exact position of the point on the line depends on the selection
of the coefficients c1, c 2 in the linear cost. One interesting open
problem is to find how can we achieve a point on AA'O'F'F
by appropriate selection of the coefficients.

As in the case of discarding policies, any blocking prob-
ability pair on ABCD'EF has the property that it is not
strictly worse than any other pair achievable by a policy in
the expelling class. Therefore it is desirable to operate the
system at some point of ABCD'EF.

The pushout class of policies is the subclass of the ex-
pelling policies with the property that the sum of the blocking
probabilities of all classes is constant and equal to the min-
imum possible. The blocking probability pair of any policy
in the pushout class will lie on the straight line segment
CD'. Theorem 3.1 shows that the end points C and D' are
achievable by the squeeze-out policy where classes 1 and 2
are given strict priorities, respectively. The points C' and D
correspond to the pushout policies with priorities given to
classes 1 and 2, respectively. The point 0' corresponds to
the policy at which no control is applied (a cell is discarded
only if the buffer if full). This policy is also achieved by
the optimal discarding policy where the blocking costs of the
two classes are the same. Pushout policies do not achieve all
the performance points achievable by expelling policies since
it is possible to decrease the blocking probability of a class
by blocking cells of the other class even before the buffer is
full, something not allowed by pushout policies. The points in
the segments AA'BC, D'EF'F are achievable by the rest
of the expelling policies. Theorem 3.2 shows that for any
expelling policy with blocking probability pair (PI, p z) , there
is a policy in GEo with blocking probability pair (p i , p i)
such that p l - p i 2 p i - p2. In other words, for the optimum
expelling policy, the reduction of the blocking probability
of the high-priority class is larger than the increase of the
blocking probability of the low-priority class.

V. NUMERICAL RESULTS

Figs. 4-6 display some of the preliminary numerical re-
sults we have obtained. The objective was to compare the
performance of some of the policies discussed in this paper.
A two-priority system with i.i.d. arrivals was considered. The
arrival process is derived from a binomial distribution and is
the same as the one used in [l l] . The arrival rate as well
as the fraction of traffic from the two priority classes was
varied. The cost of losing a high-priority cell was varied
from 10 to lo8 times the cost of losing a low-priority cell.
Value iteration [12] was used to compute the performance
of the optimal discarding, expelling and pushout policies as
well as the default policy. The default policy is the one
where cells are simply admitted to the main buffer in FIFO
order, high-priority cells first, and dropped if it is full. We
considered a system with main and temporary buffer sizes of
7 and 3, respectively. The squeeze-out and default policies
corresponded to single points in the plots in Figs 4-6 since
they are unaffected by the discarding costs. The performance
of other pushout policies are provided for comparison. In both
of these policies, low-priority cells from the temporary buffer
do not push out low-priority cells from the main buffer but
are dropped instead. In last-in-first-drop and first-in-first-drop
(LIFD and FIFD) pushout policies high-priority cells pushout
the low-priority cells that are, respectively, furthest from and
closest to the head of the queue. Note that for most cases
considered, there is little difference in the performance of
the LIFD pushout, FIFD pushout and squeeze-out policies.
As expected, the expelling policy performed better than the
discarding policy; the difference between the two policies

TASSIULAS et al.: OPTIMAL BUFFER CONTROL IN AN ATM NETWORK NODE 381

0 , I

offered load. 11.6
Loss

proh. -2 8 frartioii of r l a s i 1 ’ 11 I
0 - - a- I

O 3.4 class 2 -3
0 1.2 L

prob. of

- 5 < 1 -13’ ’ ’ -
-13 -12 -11 -10 -9 -8 -i -G -i -1 - 3 -2 - I (1

Loss prob. of class l(high priority) cell (log)

offered load: 0 8
fraction of class I: 0 1

proh.

class 2
of -2

-4
-12 -11 -10 -9 -8 -7 -6 -5 -4 - 3 -2 -1 0

Loss prob. of class l(high priority) cell (log)

off~red laad 0.ti
fraction of class 1. l1. i

0 2
O I

class 2 -3

3’ .&
2 1

B1

1 I I I , I I I I
-9 -8 -7 -6 -5 -1 - 3 -2 -1 0

Loss proh. of class l(high priority) cell (log)

Loss
proh.

of
class 2

(log)

0 2

-4 offered load 0.6
fraction of class 1 0 9

“ I

-6 -5 -4 -3 -2 - 1 I1

0

LOSS - I - 6-8 . 6.8 offered load. 0.8
: 5 , 4 fraction of class 1: 0.5

prob. 5 .

I I , , ,
-i -6 -5 -4 -3 -2 -1 0

Loss proh. of class l(high priority) cell (log)

0

Loss - I

3-8 U 3-8 offered load- 0.8
fraction of class I : 0.9 2 ”,’

prob.
of

class 2
(log)

-4 -3 -2 -1

Loss proh. of class l(high priority) cell (log) Loss prob. of class l(high priority) cell (log)

Fig. 4. Loss probabilities for two classes with main buffer size=7, temporary
buffer size=3, discarding cost of a low-priority cell=l, discarding cost of
high-priority cell changes from 10 to 10’. In the figure “A” stands for the
squeeze-out policy, “*” for LIFD pushout, “0” for FIFD pushout, “0” for
discarding policy, “x” for default policy, which sets the thresholds of both
classes to be the main buffer size, and ‘‘e’’ for expelling policy. The numbers
next to the “0” and the “e” stand for the powers of 10, of the discarding costs
of class 1 cells used to obtain those points.

depended on the total traffic and relative proportions of the
two classes of traffic. In many cases, changing the cost of
dropping a high-priority cell by an order of magnitude or more,
did not change the loss probabilities for high- and low-priority
cells. We believe this was due to (a) the discrete nature of
the problem and the small buffer size made the optimization
“nonsmooth” and (b) increasing the loss of high-priority cells
beyond a certain point made no difference to the optimum
policy since it was already heavily biased in favor of high-
priority cells. For the expelling policy, after examining the
results of the value iteration algorithm it was determined that
the decision of whether to serve the low-priority cell at the
head of the queue or to serve the high-priority cell closest to
the head of the queue was almost completely dependent on the
number of high-priority cells in the main buffer. An expelling
policy which made this decision based on a threshold on the
number of high-priority cells in the main buffer achieved losses
within 1.2% of the cost achieved by the optimal expelling
policy. This sub-optimal policy could therefore be used as a
basis for a practical implementation of the expelling policy.

For larger buffer sizes, a simulation was performed to
compare the performance of the different policies. The results
of the simulation are reported extensively in [4] and they
are briefly summarized in the following. To closely simulate
bursty traffic, 12 identical binary sources were considered
generating arrivals. Each binary source consists of an “active”

Fig. 5. Loss probabilities for two classes with main buffer size=7, temporary
buffer size=3, discarding cost of a low-priority cell=l, discarding cost of
high-priority cell changes from 10 to IO8. In the figure ‘‘A” stands for the
squeeze-out policy, “*” for LIFD pushout, “0” for FIFD pushout, “0” for
discarding policy, “ x ” for default policy, which sets the thresholds of both
classes to be the main buffer size, and “e” for expelling policy. The numbers
next to the “0” and the “e” stand for the powers of 10, of the discarding costs
of class 1 cells used to obtain those points.

and an “inactive” state, and can be characterized by a two-
state discrete time Markov chain. The traffic source alternates
between these two states, and the number of time slots spent
in each state is geometrically distributed. When in an “active”
state the source generates cells in consecutive time slots, and in
the “inactive” state no cells are generated. We call the duration
of a busy period, i.e., the number of time slots that a source
stays in the active state, a burst.

Each cell is generated by the above source is fed into a leaky
bucket server to mark the cell priority. Tokens arrive at the
leaky bucket deterministically. When the token pool inside the
leaky bucket is full, newly arriving tokens are thrown away.
An arriving cell that finds the token pool empty is marked as
low priority. If there is at least one token in the permit pool,
then the cell that obtains a token is marked as high priority,
and the token count is decremented.

Unless stated otherwise, the main buffer size, is 100. We
set the mean burst length C = 20 cells and the offered load
p = 0.9 in most cases. The token pool size is set to the mean
burst length. The token arrival rate is varied to change the
mix of high- and low-priority cells. In all cases, p1 represents
the traffic load of high-priority cells. The proportion of low-
priority cells is thus (1 - p l) / p , where p is the aggregate
offered load.

Four buffer management policies for two classes of cells
were investigated. Namely, the discarding policy, FIFD (first-

382

fraction of class 1: o 1

IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 4, AUGUST 1994

0

8 R 7 .. Loss

offered load: 1.0

Loss prob. of class l(high priority) cell (log)

n

offered load 1.11
fraction of class 1. 11.5

- .J j I I I I I I
-6 -5 -4 -3 -2 -1 0

Loss prob. of class l(high priority) cell (log)

of
class 2

offered load. I O
lrartiori d clas, 1 11 9

(log) -

- 3 -2 -1

Loss prob. of class l(high priority) cell (log)

Fig. 6. Loss probabilities for two classes with main buffer size=7, temporary
buffer size=3, discarding cost of a low-priority cell=l, discarding cost of
high-priority cell changes from 10 to lo8. In the figure ‘‘A” stands for the
squeeze-out policy, “c” for LIFD pushout, “0” for FIFD pushout, “0” for
discarding policy, “x ” for default policy, which sets the thresholds of both
classes to be the main buffer size, and ‘‘0’’ for expelling policy. The numbers
next to the “0” and the “e” stand for the powers of 10, of the discarding costs
of class 1 cells used to obtain those points.

1 -

Loss
prob.

of
class 2

PT

0

0
4 7

P;” 1

Loss prob. of class l(high priority) cell

Fig. 7.
classes of policies are depicted

The regions of achievable blocking probabilities for the different

in-first-drop) pushout policy, LIFD (last-in-first-drop) pushout
policy, and the expelling policy described earlier in this
section. The optimal pushout policy, the squeeze out policy, is
essentially the expelling policy with the threshold to expel

4 0 : DISC
e: LIFD

0: FIFD
*: EXPL

- - a--
High

Prionty
Cell
Loss

Prob.

10-1.85 10-1.5 10-1.0 10-0.5 1
Low Priority Cell Loss Prob.

Fig. 8. High-priority cell losses versus low-priority cell losses. (The thresh-
old varies from 100 to 0 cells, p from 0.1 to 0.9, p i / p = 0.9, and mean
burst length C = 20 cells).

equal to the buffer size. In both discarding and expelling
policies, the lower the threshold value is, the better the high-
priority cell performance we get. In other words, when the
threshold value is small, more space is reserved for high-
priority cells, thus the less the high-priority cell loss at the
expense of low-priority cell loss. Both LIFD pushout and FIFD
pushout perform similarly, with FIFD always slightly better
than LIFD as we can see in Fig. 8. It is clear from the graph
that the curves of the expelling policy cover the largest area
from the upper right corner among all the policies that we dis-
cuss here. In other words, the region of performance for both
high-priority cell losses and low-priority cell losses that can
be achieved is broader with the expelling policy. Indeed, the
expelling policy performs universally better than all the other
policies discussed under the same traffic conditions. Fig. 8 also
depicts that, as the offered load increases, the improvement
of the expelling policy over the discarding policy decreases.
This probably implies that the higher the total load is, the
less we can do to improve the loss performance. However,
we consider the expelling policy an attractive solution for real
traffic, because we see further relative improvement when the
losses go down to below lop6, which is the range for typical
operations.

To provide acceptable QOS, the space control policy must
give preference to the more loss-sensitive cells. It is thus clear
that as the traffic mix p l / p becomes lower, a better QOS can
be assured. However, because the expelling policy favors the
high-priority cells more than the other policies by selectively
serving low-priority cells, the advantage of the expelling
policy over the discarding policy is more significant when
the traffic mix p l / p is smaller (Fig. 9). Fig. 10 shows that
the improvement of the expelling policy over the discarding
policy is not very sensitive to the value of mean burst length
as it varied from 10 to 30 cells. Figs. 11 and 12 show the
performance gain as the buffer size is increased from 80 to 160
for two different traffic mixes. Again, the relative improvement

383 TASSIULAS et al.: OPTIMAL BUFFER CONTROL IN AN ATM NETWORK NODE

in-1.0 .
IU

10-3.0 -
High

Prionty
Cell -
Loss
Prob.

c 10-5.0 -

0 : DISC

p l f p = 0.6
p l f p = 0.5 '\,

10-7.0

10-0.9 10-0.6 10-0.3 1
Low Priority Cell Loss Prob.

Fig. 9. High-priority cell losses versus low-priority cell losses. (The thresh-
old varies from 100 (the buffer size) to 0 cells, p1 / p from 0.5 to O.S, p = 0.9,
and mean burst length C = 20 cells).

10-1.0

High
Priority

Cell
Loss
Prob.

10-2.0

10-2.4

1

-cy

e: LIFD
0: FIFD
*: EXPL

10-1.' 10-0.5 1
Low Priority Cell Loss Prob

Fig. 10. High-priority cell losses versus low-priority cell losses. (The thresh-
old varies from 100, the main buffer size, to 0 cells, I from 30 to 10 cells,
p = 0.9, and p 1 / p = 0.9).

of the expelling policy increases for the case of the traffic mix
corresponding to a larger proportion of low-priority cells.

VI. DISCUSSION AND OPEN PROBLEMS

The problem of buffer management at an output link of
an ATM node was considered in the paper. Three classes
of policies were studied and optimal policies with respect to
losses were identified. The classes of policies that have been
considered are implementable by the architectures proposed
in [3] using the Sequencer chip.

Regarding the assumptions about the arrivals, for the ex-
pelling and pushout policies our results hold for any arrival
process while for the discarding policies i.i.d. arrivals were

10-0.9
10-1.0

High
Priority

Cell
Loss
Prob.

i
4

*: 140 ---DISC
a: 160 - EXPH

10-2.2
10-0.9 10-0.7 10-0.5 10-0.3 10-0.'

Low Priority Cell Loss Prob.

Fig. 1 1 . High-priority cell losses versus low-priority cell losses. (The buffer
size vanes from SO to 160 cells, p 1 / p = 0.9, p = 0.9, and mean burst
length E = 20 cells).

10-3.0

y'pfi
Pnonty

Cell
Loss
Prob.
10-5.0

10-1.1 10-0.9 10-0.6 10-0.4

Low Priority Cell Loss Prob.

Fig. 12. High-priority cell losses versus low-priority cell losses. (The buffer
size varies from SO to 160 cells, p , / p = 0.6, p = 0.9, and mean burst
length C = 20 cells).

assumed. If Markov-modulated arrivals are considered for the
discarding class, then the state of the underlying Markov
chain of the arrival process should be included in the state
discription of the system in addition to the states of the main
and temporary buffer. The discarding actions of the optimal
policy in this case should rely on that underlying state as well.

Another open problem is the consideration of space priority
policies for models corresponding to shared memory switches.
In this case, cells destined to different switch outputs share
a common buffer. Determining the optimal policies in this
situation while maintaining cell loss fairness among cells
destined to different output ports is a challenging problem.
The ultimate goal remains to be the study of the buffer

384 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 4, AUGUST 1994

management control schemes as they interact at the network
level in different nodes. This interaction determines the end-
to-end system performance.

APPENDIX

Proof of Lemma 2.1: First we show that for every policy
go E G there exists a policy g1 E G such that

V,”,(Xo) = VL(X1).

Let the two systems have identical arrival processes and define
g1 to take the same actions with go at every slot. Clearly, the
same cells are dropped at every slot under both policies and
the ,&discounted cost is the same for xo and X I . Note that
since the state of the system is not the same under go and g1
the two policies are different in general. Nevertheless since the
number of cells is the same at every slot under go and g1 it
is indeed possible for g1 to take the same actions as go. From
the above argument clearly

VP(X1) = inf V,P(xl) 5 inf v,P(x0) = vP(x0). (12)
g E G B E G

Similarly we can show

VP(X1) 2 VP(Xo). (13)

From (12), (13), the lemma follows.
0

Proof of Theorem 2.2: Notice that for any action vector a,
and state x = (i , x T) , we have

c (x ,an) + P c x l E , y pxx,(an)v%’)

BT
= Cx7‘ + p p y v q l { i > O } (i + ? L - 1)

j = n + l y E X T

+l{i = 0 } (i + n) , y). (14)

In view of (14), in order to show (6), it is enough to show that

min { ~ (x , a) + p pxXJ (a)VO(x’))

- - min {c(x, a,) + P Pxx/(a,)VP(x’)}. (15)

X’EX aES(x)

X ‘ E X
,=O;..,BT

For any action vector a with n nonzero elements we have

c (x , a) + P p x x ~ (a) v s (x ’) 2 c (x ,an)
X‘EX

+P pxxJ(an)VP(xO. (16)
X’EX

This is so because first we have D(x , a) = D(x , a,) = l { i >
O } (i + n - 1) + l{i = 0 } (i + n) , therefore

P pxxJ(a)VP(x’) = P pxX/(an)vP(xO. (17)
X‘EX X‘ E ‘Y

Also, due to the decreasing priority arrangement of the cells
in the temporary buffer, we can easily see that

From (17) and (18) we get (16), and that implies

so (15) follows.
0

Proof of Theorem 2.3: Let U = gP(x) in the following.
Assume U > 0 initially. Since U minimizes the right-hand side
of the dynamic programming equation, the difference of the
right-hand side of (6) evaluated at n = U - 1 and at n = U is

Cxf + p py(VP(i + U - 2,y) - vqi + U - 1,y)) 2 0.
Y t X T

We show first that i + U 5 t x ; . If i + U > tx; then from
Lemma 2.3 and the definition of the thresholds we get

0 I Cxf + p p,(VP(i + U - 2,y) - VP(2 + ‘11 - L Y))
Y E X T

From the definition of y P (i , xT) , if several terms achieve
the minimum on the right-hand side of (9), the maximal value
of i is used for t,. This implies tx; = z + U which is a
contradiction. Assume now that there is a U’ > U such that

i + U’ 5 t X T .
U’

Note that GT, + ,l? p,(VP(i + U’ - 2,g) - Vp(i + U’ -

1 , ~)) 2 0 from Lemma 2.3 and from the definition of
threshold. We will show that this is a contradiction as well.
Consider the terms

Y E X T

CxT + p p y (V P (i + 1 - 2 ,y) - v q i + 1 - by))
H E X T

2 0, U 5 15 U’. (19)

The nonnegativeness of the above terms is implied from
Lemma 2.3 and the fact that the packets in the temporary
buffer are stored in decreasing priority order. The difference
of the right-hand side of (6) evaluated at n = U and at n = U’

is
U‘

c X1 T + p p y (V P (i + u - 1 , y) - V ~ (i + u ’ - l , y))
l=u+l Y E X T

1=u+1 y E X 7

TASSIULAS er al.: OPTIMAL BUFFER CONTROL IN AN ATM NETWORK NODE 385

All the terms of the sum are positive from (19), therefore U

cannot be the action of the optimal policy. If U = 0, we are
interested only in the case l(xT) > 0. The proof is similar.

In case 1, where only a fraction of the low-priority cells
need to be pushed out, relation (a) holds for the same reason
as in case 3. In order to see why (c) holds, we just need to

o observe that
Proof of Lemma 3.1: We construct the policy 7r1 for t =

B(1) j-1

l (X i (1) = l}+Dlyl) = L (0) - C l (X i (l) = 1) (c.1) 2,3, . . . such that (10) holds. More specifically we show that
for all t = 1 , 2 , . . . we have

i=j i=l

Dyt) 2 D(t) , (4

B(1) j-1
P (t) + Dyt) = P (t) + D (t) , (b) l(Xi(1) = 1) +D"l) = L(0) - l(Xz(1) = 1 } , (c.2)

i=l . .
2=3

B (t) B(t)

l(x;(t) = l } + D y t) 2 l(Xz(t) = 1) where L(O), i (0) are the total number of low-priority cells in
the system at t = 0. Clearly . . i=j a = j

+bl(t), j = 1,. . . , B(t) , (c) j-1 j-1

l (Xi (1) = 1) 5 l (Xz(1) = l } . (c.3)
and xi(t) = Xi(t) , B(t) < i 5 B, (4 i=l i=l

where B(t) is the maximum buffer position at time t that
contains one of the cells that were in the buffer at time t = 1.
The variable B(t) is defined at time t , just after the accepting
and discarding decisions have been made. If at time t the
buffer contains no cell that was in the system at time t = 1
then B(t) = 0. Because of the FCFS property of the policies
considered, if B(t) > 0, then all packets in the buffer positions
1, .., B(t) were in the system at time t = 1. Notice that B(1) is
the same for all policies in GP since a cell cannot be discarded
if the buffer is not full. B(t) is defined similarly to B(t) for
the system operated under policy i?. The relations (c), (d) are
auxiliary relations needed to show that (a), (b) hold for all t.

If all the cells in the temporary buffer fit into the main buffer
without discards, then the state of the main buffer at t = 1 is
identical under policies ii and 7r1. If we let 7r1 act identically
to ii at t = 2 , . . . then the states of the system under the two
policies match and (a)-(d) hold trivially.

If all the cells do not fit in the main buffer without discarding
then we proceed as follows. We show first that (a)-(d) hold for
t = 1. Then we show that if (a)-(d) hold for t = T and 7r1 is
appropriately defined at t = T + 1, based on the action that i?
takes in the same slot, then (a-d) hold at slot T + 1 as well.
By induction we conclude that policy 7r1 can be defined in the
slots 2 , 3 , . . . such that (a)-(d) hold.

For t = 1 we have by definition B(t) = B(t) = B, hence
(d) holds trivially. Also we can easily see that (b) holds. For
relations (a), (c) we distinguish three cases, for the state of the
system at t = 1, which are illustrated in Fig. 2.

In case 2, where the number of high-priority cells in the
main and temporary buffer exceed the capacity of the main
buffer, relations (a,c) easily follow since D"(t) is equal to
the total number of low-priority cells in the system.

In case 3, where all the low-priority cells that were in the
main buffer at t = 0 are discarded at t = 1, relation (a)
follows if we think that D"(t) has the maximum possible
value under any policy in GP given that the main buffer is full
at t = 1. Relation (c) follows if we see that the main buffer
has the smallest possible number of low-priority cells under
any policy and they are all at the end of the buffer.

Since according to 7rP0 we push out the largest number of
low-priority cells, and we start from the head of the queue,
relations (c.l), (c.2), and (c.3) imply (c).

Now assume that relations (a)-(d) hold at T. Define the
policy TI at T + 1 based on the action of the policy ii at
the same slot as follows. Push out (B(7) - 1)+ - B(T + 1)
cells starting from the low-priority cells closest to the server
that reside in positions 1,. .. , B(T) and continue with the
high-priority cells in the same positions. For the positions
B(T + l), . . . , B emulate ir at T + l , , i.e., accept the same
cells and put them in the same positions of the main buffer.

We argue in the following tha! the above con_struction is
possible. Note first that B(T) = B(T) , therefore B(T + 1) 5
(B(T) - l)+ and the first part of the construction is possible.
Furthermore note that the state of the buffer in positions
B(T), . . . , B is identical under the policies 7r1, ii and also
the state of the temporary buffer is identical under the two
policies. Hence 7r1 can indeed emulate ii for the positions
B(T + l), . . . , B and the second part of the construction is
feasible as well.

We argue in the foll_owing that (a)-(d) hold for t = 7 + 1.
Clearly B(T + 1) = B(T + 1) and (b), (d) follow immedi-
ately for T + 1. Relation (a) for t = 7 + 1 follows from
relation (a) for t = T , the fact that the maximum possible
number of low-priority cells are expelled under 7 r P o from
positions ~ , . . . , B (T) of the main buffer, and the fact that
the main buffer is identical under the two policies in positions
B(T), . . . , B. Relation (c) for t = T + 1 follows from relation
(c) for t = 7 , and the fact that the maximum possible number
of low-priority cells are expelled under 7 r P o starting from the
cells closest to the head of the queue. This completes the
induction step and the proof.0

Proof of Theorem 3.1: We define inductively a sequence of
policies r k , IC = 1,2 , . . . with the property that policy T k

acts identically to policy 7 r P o for the first IC slots. Policy 71-1

has been defined in Lemma 3.1. Policy r k + 1 is defined based
on T k as follows, Repeat the construction of Lemma 3.1 with
policies r k and "k+l in place of ii and 7r1 respectively and
the construction starting at time t = IC + 1. We can easily see

386 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 4, AUGUST 1994

from Lemma 3.1 that we have 1131 L. Tassiulas, Y. C Hung, and S. Panwar, “Optimal buffer control during
congestion in an ATM network node,” Polytechnic Univ., Tech. Rep.
CATT-93-66, 1993.

[14] Y. Yeh, M. G. Hluchyj, and A. S. Acampora, “The Knockout Switch:
A simple, modular architecture for high-performance packet switching,”
IEEE J . Select. Areas Commun., vol. SAC-5, pp. 1274-1283, Oct. 1987.

D(”l)l(t) 2 B,”l(t),

D(“+l)l(t) + D(”+l)h(t) = D”(t) + D“(t) t = 1,2, . . .
(20)

where D”(t), D‘“’(t) are the numbers of dropped high and
low-priority cells, respectively, by slot t when policy 7Tk

schedules admissions. Under policy n k the system evolves
identically as under policy +” until slot k . Therefore we have

D y k) = D y k) 2 D (y k) 2 . . ’ 2 D (k) ,

D y k) + D“k) = D“(k) + D y k)

from (20) and Lemma 3.1.
0

ACKNOWLEDGMENT
We would like to thank R. F. Chen for providing some

of the simulation results and the reviewers who helped to
considerably improve the presentation of the paper with their
thorough reviews.

REFERENCES

G . A. Awater and F. C. Schoute, “Optimal queueing policies for fast
packet switching of mixed traffic,” IEEE .I. Select. Areas Commun., vol.
SAC-9, pp. 458-467, Apr. 1991.
A. W. Berger, A. E. Eckberg, T. C. Hou, and D. M. Lucantoni,
“Performance characterizations of traffic monitoring, and associated
control mechanisms for broadband “packet” networks,” in Proc. IEEE
GLOBECOM 90, San Diego, CA, Dec. 1990, pp. 350-354.
H. J. Chao and N. Uzun, “A VLSI sequencer chip for ATM traffic shaper
and queue manager,” IEEE J . Solid-State Circuits, pp. 1634-1643, Nov.
1992.
R. F. Chen and S. Panwar, “Optimal buffer management for ATM
congestion control,” Polytechnic Univ., Tech. Rep. CATT-94-74, 1994.
A. Gravey and G. Hebuteme, “Mixing time and loss priorities in a single
server queue,” in Proc. 13th ITC, Copenhagen, June 1991, pp. 147-152.
H. Kroner, “Comparative performance study of space priority mecha-
nisms for ATM networks,” in IEEE INFOCOM 90, San Francisco, CA,
June 1990, pp. 1136-1143.
H. Kroner, G. Hebuteme, P. Boyer, and A. Gravey, “Priority manage-
ment in ATM switching nodes,” IEEE J . Select. Areas Commun., vol.
9, pp. 418-427, Apr. 1991.
S. A. Lippman, “Applying a new device in the optimization of exponen-
tial queuing systems,” Oper. Res., vol. 23, no 4, pp. 687-710, July-Aug.
1975.
D. W. Petr and V. S. Frost, “Optimal packet discarding: An ATM-
oriented analysis model and initial results,” IEEE INFOCOM 90, San
Francisco, CA, June 1990, pp. 537-542.
__, “Priority cell discarding for overload control in BISDN/ATM
networks: An analysis framework,” Int. J . Digital and Analog Commun.
Syst., vol. 3, no. 2, Apr.-June 1990, pp. 219-227.
-, “Nested threshold cell discarding for ATM overload control:
optimization under cell loss constraints,” IEEE INFOCOM 91, FL, Apr.

S. Ross, Introduction to Dynamic Programming. New York: Academic,
1983.

1991, pp. 1403-1412.

Leandros Tassiulas (S’89-M’91) was bom in 1965,
in Katenni, Greece. He received the Diploma in
electncal engineenng from the Anstotelian Univer-
sity of Thessaloniki, Thessaloniki, Greece, in 1987,
and the M.S and Ph D degrees in electncal engi-
neering from the University of Maryland, College
Park, in 1989 and 1991, respectively.

Since September 1991, he has been in the De-
partment of Electncal Engineering at Polytechnic
University, Brooklyn, NY, as an Assistant Professor.
His research interests are in the field of computer

and communication networks with emphasis on wireless communications and
high-speed networks, in control and optimization of stochastic systems and in
parallel and distnbuted processing.

Yao Chung Hung received the B.S. degree in com-
puter science from Tunghai University, Taichung,
Taiwan, in 1985. He also received the M.S. degree in
systems engineering in 1989 and the Ph.D. degree in
electrical engineering in 1993 from the Polytechnic
University, Brooklyn, NY.

He was a graduate assistant at Polytechnic Uni-
versity working on real-time scheduling policies and
optimal buffer management policies. He has been
with Allenon, Inc., East Hanover, NJ, since 1993
working on network management.

Shivendra S. Panwar (S’82-M’85) was bom in
Delhi, India, on December 15, 1959. He received
the B.Tech degree in electncal engineering from
the Indian Institute of Technology, Kanpur, in 1981,
and the M.S. and Ph.D degrees in electncal and
computer engineenng from the University of Mass-
achusetts, Amherst, in 1983 and 1986, respectively.

From 1981 to 1985 he was a Research Assistant
at the University of Massachusetts. He joined the
Department of Electncal Engineering at the Poly-
technic University, Brooklyn, NY, where he is now

an Associate Professor. He is currently an Associate Director of the New York
State Center for Advanced Technology in Telecommunications. He spent the
summer of 1987 as a Visiting Scientist at the IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, and has been a Consultant to AT&T Bell
Laboratones, Holmdel, NJ His research interests include the performance
analysis and design of high-speed networks.

Dr. Panwar is a member of Tau Beta Pi and Sigma Xi He has served as
the Secretary of the Technical Affairs Council of the IEEE Communications
Society from 1992 to 1993 and is a member of the Technical Committee
on Computer Communications. He was the Co-chairman of the Technical
Program Committee and a member of the Organizing Committee of the
Second IEEE Network Management and Control Workshop, Tarrytown, NY,
September 1993. He has also been a member of the Technical Program
Committee of INFOCOM ’90 and ’93, and a Session Chair in INFOCOM ’90
He is co-editor of the forthcoming book, Nerwork Management and Control,
Vol I I which will appear in 1994

