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Abstract-In this paper we study the problem of optimal buffer 
space priority control in an ATM network node. The buffer of 
a transmission link is shared among the cells of several traffic 
classes waiting for transmission through the link. When the 
number of cells to be stored in the buffer exceeds the available 
buffer space, certain cells have to be dropped. Different traffic 
classes have different sensitivities to cell losses. By appropriately 
selecting the classes of cells which are dropped or blocked in case 
of overflow, we can have the more sensitive classes suffer smaller 
cell losses. Depending on the control that we have on the system, 
three classes of policies are distinguished. In each one, policies 
that schedule the buffer allocation in some optimal manner are 
identified. 

I. INTRODUCTION 

temporary buffer main buffer 

Fig. I .  The system model. 

system and they are placed in the temporary buffer which has 
length B,. These cells may belong to different traffic types. 
This assumption is consistent with the structure of knockout- 
type ATM switches [14] or a switch with output queueing. At 
the end of each slot the cells from the temporary buffer are 
either placed in the main buffer or dropped from the system. 
Depending on the available control we have over the dropping 
of cells from the temporary or the main buffer and over the 
placement of the cells in the main buffer, we will distinguish 
three classes of policies. In all the policies considered it is 
assumed that the cells which enter the main buffer in every 

cells is not allowed. Hence, the FIFO discipline is preserved 
and the cells are delivered in order. This property is essential 
in 

The first class is that of discarding policies. A discarding 
policy cannot modify the state of the cells which are already 
in the main buffer. It cap only control the admission of the 
cells from the temporary buffer, by blocking some if necessary, 
and the placement of the admitted cells in the main buffer. We 
show that the optimal discarding policy is of “multithreshold 
type.” That is, for each priority class there is a threshold, and if 
the number of cells in the main buffer exceeds that threshold, 
the cells of that class are blocked from admission. The policy 
is optimal in the sense that it minimizes the long run average 
blocking cost where a cost is associated with each cell that 
reflects the loss sensitivity Of its ‘lass. 

The second class of policies considered are the pushout 
policies. A pushout policy is allowed to expel cells from the 
main buffer in Order to make for cells in the temporary 
buffer which cannot enter the main buffer because it is full. 
A cell from the temporary buffer cannot be blocked from 
admission to the main buffer if there is space in the main 
buffer. We obtain the optimal pushout policy, which we call the 
squeeze-out policy, in a system with two priority classes. That 

NE of the main problems arising in the area of high 
speed communication networks is the design of control 

algorithms for the efficient sharing of the buffer space in an 
ATM node. Cells of different traffic types amve at the node 
and are stored in a buffer until their transmission. Cells of 

function which marks excessive traffic cells at the source 
network interface or by an encoding scheme which creates 
cells with different priorities [2]. When a cell finds the buffer 
full upon it may be discarded before admission into 
the system. The cell loss due to buffer overflow incurs a 
degradation in the overall system which is highly 
dependent on the type of the discarded cells. certain traffic 
types are sensitive to potential cell losses than others. 
we can reduce the probability of discarding a loss-sensitive 
cell due to buffer overflow if we block the admission of less 
loss sensitive we may also consider expelling less loss 
sensitive cells from the buffer. In this paper we study how we 
can do this in an optimal manner. 

we consider a single outgoing link and the corresponding 
dedicated buffer in a network node. The system is modeled 
by a single queue ( ~ i ~ .  1). ne queue has a buffer 
that Store B cells; this is called the main buffer in the 
following. Time is slotted and the transmission of a cell takes 
one slot. During one slot at most B, cells may arrive to the 
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priority cells that are appended to the end of the queue. The 
squeeze-out policy minimizes the blocking probability of the 
high-priority (loss sensitive) class among all pushout policies. 

The third class of policies considered are the expelling 
policies. Expelling policies are allowed to expel cells from 
the main buffer or block cells in the temporary buffer from 
admission into the main buffer irrespective of the system state. 
Properties of the optimal expelling policy are obtained that 
narrow down the set of candidate policies considerably in a 
system with two classes. More specifically, we show that, like 
in the case of the squeeze-out policy, the cells are placed in 
the main buffer high priority first and low-priority cells are 
pushed out, starting from the head of the queue, if there is no 
space. In addition to that, the optimal expelling policy may 
drop low-priority cells even if the main buffer is not full, but 
only if the low-priority cell(s) is (are) at the head of the queue. 

Clearly, an expelling policy has more control over the 
system than discarding and pushout policies. In other words, 
the class of expelling policies contains the discarding and 
pushout policies as subclasses. Policies of different classes 
have different degrees of implementation difficulty. For one 
approach that allows for the implementation of some of the 
policies considered in this paper, see [3]. 

The problem of sharing the buffer space among several 
competing traffic streams has attracted considerable attention 
in the past. Several strategies for buffer sharing, called space 
priority access methods, have been proposed and analyzed. 
Petr and Frost in [lo] distinguish several classes of buffer 
sharing policies based on the time instances at which control 
actions can be taken and on the groups of cells that can 
be discarded. The three classes of policies studied here fall 
within that framework. Discarding type policies have been 
studied by Petr and Frost in [9], [ l l ] .  In [9] the problem of 
minimizing the average discarding cost has been considered in 
a system with an arbitrary number of priority classes and one 
buffer space. In [ 111 the problem of maximizing the offered 
load over all multithreshold type policies under constraints 
on the losses of each class is considered. Here we determine 
the optimum discarding policy for systems with buffers of 
arbitrary length. 

The pushout scheme is another buffer sharing strategy 
that has been studied extensively in the past. An important 
component of a pushout strategy is to decide which cell to 
pushout of the buffer in order to make space for an incoming 
cell. Kroner and Kroner et al. have analyzed the performance 
of several buffer sharing schemes, in [6], [7] including a 
pushout policy which expells low-priority cells starting from 
those closest to the tail of the queue, i.e., the youngest low- 
priority cells. They obtained the cell loss probabilities under 
different buffer sharing schemes for a two class M / G / l / N  
system. In our work we identify two important properties of 
the optimal pushout policy. It is better to push out the oldest 
low-priority cell from the buffer and it is better to push out 
a low-priority cell from the buffer in order to make space for 
another cell, irrespective of its priority. These two properties 
uniquely characterize the optimal pushout policy, called the 
squeeze-out policy, as we show in Section 111-A. The class 
of expelling policies has been identified in [lo] but they 
haven't been analyzed. Lippman [8] showed that the optimum 
discarding policy for an M f M f e/ K queue (with no temporary 
buffer) is of multi-threshold type. Policies to meet both cell 
delay and loss requirements were considered in [ 11, [5]. 

The paper is organized as follows. In Section I1 the dis- 
carding policies are analyzed. The pushout and the expelling 
classes of policies are analyzed in Section 111-A and -B, 
respectively. In Section JV we discuss some of the implications 
of our results. In Section V numerical results are reported. In 
Section VI we discuss some extensions to our work and open 
problems. 

11. DISCARDING POLICIES 

The cells are classified into L priority classes. The high- 
priority classes are more sensitive to cell losses. Without loss 
of generality we assume that the priority of class 1 is higher 
than the priority of class 1 + 1. The priority of a class i s  
reflected by the cost that is incurred by the blocking of a 
cell of that class. As we mentioned earlier, at most BT cells 
of all classes arrive into the system during every slot and 
they reside in the temporary buffer. By the end of each slot 
a decision is taken regarding which cells will be admitted 
in the system and where they are going to be placed in 
the buffer. The rest of the cells are discarded. We denote 
by X y ( t )  the class of the cell residing at the main buffer 
position i, i = 1, ..,B by the end of slot t;  X"t) = 0 
if position i is empty at this time. We denote by X T ( t )  
the class of the cell residing at position i of the temporary 
buffer i = 1, .., BT; X T ( t )  = 0 if this position is empty 
at this time. The vectors X"(t) = ( X y ( t )  : i = 1, . . ,B) ,  
X T ( t )  = ( X T ( t )  : i = 1, .., BT), represent the main and 
temporary buffer occupancies at the end of slot t. Without loss 
of generality we may assume that in the temporary buffer, the 
cells are stored in decreasing priority order and in contiguous 
buffer spaces; that is, for X T ( t )  > 0, i > 1, we have 
0 < XEl ( t )  5 X T ( t ) .  The temporary buffer at the end of slot 
t contains cells that arrived during slot t only. The ordering 
of the cells in the temporary buffer is assumed only for a less 
cumbersome discription of the optimal discarding policy, since 
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in this manner the control action can be specified by a single 
variable. The cells which are admitted can be placed in any 
order in the main buffer since, as it is shown later, the ordering 
of the cells in the main buffer is irrelevant to the performance 
of the optimal discarding policy. This is not the case for the 
pushout and expelling policies where the order of the cells in 
the main buffer is important. The implications of this property 
for these two classes of policies are discussed in Section 111. 
We assume independent identically distributed arrivals from 
slot to slot. The vector X(t) = ( X M ( t ) , X T ( t ) )  is a natural 
state variable and we use the notation { X ( t ) ,  t 2 0) for the 
stochastic process that describes the evolution of the system. 
The state space of that process is X = X M  x X T  where 
X”‘ = {0,1, .., L } B  and X T  = {0,1, .., L}BT are the spaces 
where the vectors X”(t)  and X T ( t )  lie respectively. 

All the cells in the temporary buffer, by the end of each slot 
t ,  are either admitted in the system and placed in the main 
buffer or rejected. We control the admission of cells in the 
main buffer. The control actions taken by the end of slot t are 
represented by the admission variables A, ( t )  E { 0, 1, . . , B} ,  
i = 1. .., BT as follows. We have A,(t) = 0 if either 
position i of the temporary buffer is empty or the cell stored 
in that position is blocked from admission into the system; 
we have A,(t) = j if the cell residing in position i of the 
temporary buffer is placed in position j of the buffer. The 
vector A(t) = (A,( t )  : i = 1, ..,BT) is called the admission 
vector at time t in the following. Let A = (0. .., be the 
space where it lies; this is called action space in the following. 
We assume that the cells of the temporary buffer which are 
admitted in the main buffer are placed in consecutive positions 
at the end of the existing queue. Let S(x) be the set of all 
admission vectors which satisfy the above assumption when 
the system is in state x. 

At each slot t exactly one cell is transmitted. The cells in 
the main buffer are served in a FIFO manner. Given the state 
of the system at the end of slot t and the admission vector at 
that time, the main buffer occupancy vector by the end of slot 
t + 1 is specified deterministically. Let D : X x A + X” 
be a function such that X M ( t  + 1) = D ( X ( t ) , A ( t ) ) .  The 
state of the temporary buffer at the end of slot t + 1 is 
determined completely from the arrivals during that slot. Under 
the assumption of i.i.d. arrivals the evolution of the system is 
Markovian. Given the state of the system at time t and the 
admission vector at that time, the probability distribution of 
the state at t + 1 is completely determined by the function 
D and the probability distribution induced by the arrivals on 
X T .  Let p ,  be the probability that the temporary buffer has 
the configuration y, y E X T  at the end of slot t + 1. The 
transition probability Pxxf(a) = P r ( X ( t  + 1) = x’lX(t) = 
x,A(t) = a) is given by 

An admission policy is any rule for selecting the admission 
variables at every time t 2 0. This decision is made on the 
basis of the past system states {X(s), t 2 s 2 0} and past 
decisions. Let G be the class of all admission policies such 

that the admission vector A(t) belongs to the set S ( X ( t ) )  at 
all t .  

When a cell of class 1 is dropped from the system then a 
cost cl is incurred. We assume that the classes are indexed 
in decreasing priority, that is ci > ci+1, 1 = 1, .., L - 1. By 
convention we set CO = 0. The total cost incurred when the 
system is in state x and the admission actions that correspond 
to vector a E S(x) are taken is 

BT 
c ( x ,  alef l { a i  = o}c,T , x E X, a E ~ ( x ) .  ( 2 )  

i=l 

where l{ai = 0} = 1 if a; = 0, 0 otherwise. 
The blocking cost incurred at time t is C ( t )  = 

c ( X ( t ) ,  A@)). Our objective is to minimize the average 
blocking cost. The long run average cost associated with a 
policy g E G is defined by 

~ T-I 

where E:[.] denotes the expectation with respect to the proba- 
bility measure induced by the policy g on the state process 
starting in state x. An admission policy go is said to be 
average cost optimal discarding policy if it minimizes ( 3 )  
within G, i.e., if 

Jg, (XI I J g ( 4 ,  x E X 

for any other policy g E G. Under our assumptions about 
the arrival statistics, the optimization problem associated with 
( 3 )  falls within the family of discrete time Markov Decision 
Processes (MDP’s). Since the state space is finite , it is well 
known that an optimal policy exists and it can be taken in 
the class of Markov stationary policies [12]), that is policies 
for which the control actions are time-invariant functions of 
the state only. A stationary policy g is identified by the 
functions g; : X + {0,1, ..,B}, i = 1, ..,BT. When the 
system is controlled under policy g, at every time t we have 
A , @ )  = g ; ( X ( t ) )  and in vector form A(t) = g ( X ( t ) ) .  
In order to study the optimization problem associated with 
the long run average cost ( 3 )  we need to consider first the 
optimization problem associated with the /?-discounted cost 
defined next. 

The /?-discounted cost (0 < /? < 1) associated with a policy 
g E G is defined by 

00 

v;(X)%fE:[C/?tC(t)],X E X (4) 
t = O  

where Eg[.] has the same meaning as in ( 3 ) .  An admission 

minimizes (4) within G, i.e., if 

policy go B is said to be P-optimal discarding policy if it 

for any other policy g E G. It is well known [12] that 
a /%optimal policy exists and it can be taken within the 



TASSIULAS et al.: OPTIMAL BUFFER CONTROL IN AN ATM NETWORK NODE 377 

3 2  . . .  
value function for the P-discounted problem satisfies 

Markov stationary policies. The P-optimal cost associated with 
discarding policies is by definition 

vP(x) = inf v,”(x),x E X. 

It is also well known that since the Markov decision process 
under consideration has finite state space, the P-optimal cost 
is achieved for some policy and it satisfies the dynamic 
programming equation 

gEG 

In view of (l), (5) can be written as 

VP(X)  = min {c(x,a) + P  pyVP(D(x,a),y)}. 
aES(x) 

Y E S T  

The necessary and sufficient condition for a stationary policy 
go to be a P-optimal discarding policy is 

g”x) = arg min {C(X,  a) + P P,VP(D(X, a), Y ) ) .  
a€S(x) 

Y E  X T  

A. Ovtimal Cell Discarding Policv ” 

In this section we study the problem of obtaining the optimal 
discarding policy. We show that the optimal policy makes the 
admission decisions based only on the length of the main 
buffer and not on the class of packets in it. Furthermore, it 
is of threshold type with one threshold for each class of cells. 
According to the optimal policy (Fig. 3), cells are admitted 
in the main buffer high-priority cell first. If the queue length 
exceeds the threshold ti and the next cell to enter the main 
buffer is of class t i ,  then the rest of the cells are discarded. We 
characterize the optimal policy for the P-discounted problem. 
Then by standard arguments [ 121 the same characterization is 
obtained for the average cost optimal policy. 

1)  State Space Reduction: In this section we show that the 
decisions of the optimal policy depend only on the number 
of cells in the main buffer and on the state of the temporary 
buffer. Based on that, we get a reduction of the state space. Let 
l(x) be the number of cells in the main buffer when the system 
is in state x. In the next lemma, we show that the @optimal 
cost has the same value for any two states that correspond 
to the same temporary buffer state and the same number of 
messages in the main buffer. The proof of the lemma is in 
the appendix. 

From the above results it is clear that when we consider 
cell discarding policies we may consider the Markov decision 
process defined on the state space X = {0 ,1 ,  .., B }  x X T  
which will be denoted by X in the rest of this section. 

From now on the state of the process is x = ( i ,  x’) where 
i E {0,1, .., B }  and xT E X’. The action space associated 
with a state x = ( i , ~ ’ )  is equal to the common action space 
S(x/) of all states x’ E X M  x X’ such that l(x’) = i .  
An immediate implication of the above reduction of the state 
space is that the placement of the admitted cell in the main 
buffer is irrelevant as far as the optimal control problem is 
concemed. Therefore, the action vector should indicate for 
every cell in the temporary buffer whether it is admitted or 
not and can be taken to be binary. Indeed, the action vectors 
will be considered to be binary in the following. The transition 
operator D(.,  .) indicates the length of the main buffer in 
the new state space and it takes values in Z+. If the action 
vector a E S(x) has n nonzero elements and x = (i,xT) 
then the transition operator is D(x,a) = i + n - 1 if i # 
0, and D(x,a) = i + n if i = 0. 

2 )  Reduction of the Action Space: The reduction of the 
state space that was obtained in the previous section implies 
a reduction in the action space from &--dimensional to one 
dimensional. More specifically we will show that the optimal 
action is to accept the first n cells in the temporary buffer 
for some value of n. The placement in the main buffer of the 
accepted cells is irrelevant. Consider the activation vectors 

a, = (a j  : aj = 1, 1 5 j 5 n, uj = 0, 71 < j 5 BT).  

The following theorem is proved in the appendix. 
Theorem 2.2: The minimum in the right-hand side of the 

dynamic programming equation ( 5 )  is achieved at one of 
the action vectors a,, n = 0, .  . ., BT and the dynamic 
programming equation can be written as 
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The @-optimal discarding policy g p ( x )  can be considered to 
take values in { O , l , .  . ., BT}  and it is 

+p p y V f l ( l { i  > O } ( i  + 7L - 1) + l { i  = O } ( i  + n),y)}.  
Y E X T  

(7) 

B .  The Optimal Policy 

The characterization of the optimal policy is given after the 
next lemma. Two properties of the cost function are stated. 
First that it is increasing with the queue size of the main buffer, 
or in other words that more cells are discarded in the future if 
there are more cells in the main buffer initially. Second, that 
the cost function is convex, that is the increase of the number 
of discarded cells in the future, as we go from initial main 
buffer queue size i to size i + 1, increases with i. Roughly 
speaking, the rate of increase of the cost function with respect 
to i is increasing as well. 

Lemma 2.3: The value function associated with the 0- 
discounted problem for discarding policies is nondecreasing 
and convex in i 

V P ( ( i , X T ) )  5 vq i  + l , X T ) ) ,  i = 0, .  . . , B  - 1 

V " ( 2 , X T ) )  - V P ( ( 2  - l , X T ) )  5 vq i  + l , X T ) )  
- V P ( ( i , x T ) ) , i  = 1, ..,B - 1.  (8) 

The proof of the lemma is cumbersome and is omitted here. 
It can be found in the technical report version of the paper 
[13]. A consequence of the convexity of the cost function is 
that the optimal policy will be of threshold type, as is stated 
rigorously in Theorem 2.3. This can be argued intuitively as 
follows. A cell of class j is accepted in the main buffer if the 
increase in the cost due to future discarded cells because of 
the admission of the current cell is smaller than the cost cj 
that will be incurred by the discarded cell. Now the convexity 
of the cost function implies that the increase in the discarding 
cost is increasing with the main buffer queue size. Therefore 
if a cell of class j is discarded when the main buffer queue is 
equal to i ,  it will be discarded for larger main buffer lengths 
as well. The proof of the following theorem is in the appendix 

Theorem 2.3: There exists a ,&optimal discarding policy 
g B ( i . y )  of the following form. There are thresholds tl 2 
t2 2 .. 2 t L  defined by 

-V"i - 1,y)) L O.} (9) 

In the case of ties, tj is the maximum i which achieves 
the minimum above. A cell of class j in position k of the 
temporary buffer is accepted if and only if 

ti  2 i + k 

where i is the length of the main buffer. That is 

gP( i ,xT)  = max{k : i + IC I t,.}. 

C. Average Cost Optimal Policy 

Using standard techniques from the theory of Dynamic 
Programming we can characterize the optimal policy for the 
average cost case. The following theorem can be proved 
easily based on the results we obtained for the @-discounted 
problem and some results that relate the P-discounted and the 
average cost problem in [12]. The intuitive explanation of the 
thresholds is the same as for the P-discounted optimal policy. 

Theorem 2.4: There exists an average cost optimal discard- 
ing policy go of the following form. Consider the thresholds 
tl 2 t2 2 . . .  2 t ,  defined by 

where h ( i , x )  = lim ( V p n ( i , x )  - VplL(O,O)) for some 
sequence On + 1 and in the case of ties, t j  is the maximum 
i which achieves the minimum above. A cell of class j in 
position k of the temporary buffer is accepted if and only if 

11-Dc: 

t j 2 i + k  

where z is the length of the main buffer. That is 

g D ( i ,  x )  = max{k : i + k 5 t,;}. 

We outline the steps of the proof of the Theorem 2.4. 
It is shown first that lim ( V o n ( i , x )  - V p - ( O , O ) )  exists, 
therefore h(i ,  x )  is well defined. Then it is shown that h(i ,  x) 
is increasing and convex in i using Lemma 2.3. The proof of 
the theorem is concluded in the same manner as the proof of 
Theorem 2.3. 

n-03 

111. CELL EXPELLING POLICIES 

In the following two sections we study the pushout and the 
expelling policies. The main difference between these policies 
and the discarding policies is that cells in the main buffer can 
be dropped (expelled) from the main buffer under the pushout 
and expelling policies. The class of pushout policies contains 
all policies for which a cell is dropped only if the buffer is full. 
Any policy in the pushout class minimizes the total cell loss 
over all priority classes. Different pushout policies achieve a 
different apportioning of the individual losses of each priority 
class. In Section 111-A we obtain the policy that minimizes 
the cell loss of the high-priority class in a system with two 
priority classes. This policy, that we call squeeze-out, achieves 
the minimization of cell losses in systems with arbitrary cell 
arrival processes. 

The class of pushout policies is a subclass of the more 
general class of expelling policies. Policies of the latter class 
are allowed to expel or discard a cell at any time, even before 
the buffer is full. By dropping cells while the buffer is not full, 
the total cell loss is increased. However a smaller loss of the 
high-priority class may be achieved, than that achieved by the 
squeeze-out policy. In Section 111-B, we identify the class of 
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policies GEo with the following property. For any arbitrary 
expelling policy g, there is a policy g' E GEo, that has a total 
cell loss less than or equal to that of g and a high-priority cell 
loss less than or equal to that of g. Therefore for any practical 
purpose we can search for an expelling policy within GEo. 
The class GEo is considerably more restricted than the class 
of expelling policies. Unlike our study of discarding policies, 
the results in this section are restricted to systems with two 
priority classes only. 

We keep the notation that we introduced in Section I1 in 
this section as well. Nevertheless we prefer to specify the 
class of policies we consider and the optimal policies in 
words rather than mathematically in this section, since the 
first description is precise enough and we don't need the 
mathematical description in the proof of the results. 

A .  Pushout Policies 

obey the following rules. 
The class of pushout policies GP contains all policies which 

a) A cell can be expelled from the main buffer only if it 
is "pushed out" by another cell in the temporary buffer 
which cannot enter the main buffer because it is full. 

b) A cell from the temporary buffer can be discarded only 
if the main buffer is full. 

The following policy is optimal in GP. 
Squeeze-out Policy r P 0 :  

1) Append the cells from the temporary buffer to the end 
of the main buffer, high-priority cells first. 

2) If the main buffer is full, and there are cells in the 
temporary buffer, push out the low-priority cells starting 
from those closest to the head of the queue. 

3) If all the low-priority cells in the main buffer are pushed 
out discard all remaining cells in the temporary buffer. 

The policy 7 r P o  is optimal within GP in a very strong sense. 
It minimizes at every slot t the number of high-priority cells 
lost. Furthermore, this holds for arbitrary arrival pr_ocesses and 
not only for i.i.d. arrivals. Let D h ( t ) ,  D ' ( t )  and Dh( t ) ,  D ' ( t )  
be the numbers of dropped cells by the end of slot t of the high 
and low-priority classes, respectively, under policy TPO and for 
an arbitrary policy ir E GP. Then we have the following. 

Theorem 3.1: When the system starts from the same initial 
state under policies 7rP0, ir and the amvals are identical under 
the two policies we have 

D"t) 2 D ( t )  
D"t) + D y t )  = D ( t )  + B h ( t ) ,  t = 1 , 2 , .  ' .. 
The intuition behind the optimality of the squeeze-out policy 

is the following. The total number of cells that go through 
the queue is the same for all policies of the pushout class. 
The policy that maximizes the throughput of the high-priority 
class, minimizes the throughput of the low-priority class. 
The squeeze-out policy does exactly this by maximizing the 
availability of low-priority cells for discarding from the main 
queue. The proof of the theorem relies on the following lemma 
and is included in the Appendix together with the proof of the 
lemma. 

Lemma 3.1: For any policy ir E GP there exists a policy 
7r1 which acts identically to T P O  at t = 1 and is appropriately 

defined at t > 1 such that if the system starts from the same 
initial state under both policies, and the arrival processes are 
identical, then we have 

D y t )  2 B'"(t) 

D y t )  + D y t )  = B'"(t) + B h ( t ) ,  t = 1, ' .  . (10) 

where D""(t), DIh( t )  are the numbers of dropped cells of low 
and high priority, respectively, by the end of slot t under policy 
Tl . 

B.  Expelling Policies 

The class of expelling policies GE has as members all 
policies that append the new cells from the temporary buffer to 
the end of the queue and do not rearrange the cells in the main 
buffer. An expelling policy is allowed to expel or block any 
cell in the main or temporary buffer respectively, irrespective 
of the state. Hence the only requirement an expelling policy 
should satisfy is to preserve the FIFO order. Other than that it 
can drop cells arbitrarily. Clearly the class of expelling policies 
is larger than the previous two. 

We were able to obtain properties of the optimal policy that 
narrow down the class of policies that contains the optimal 
policy significantly. We have shown that an optimal policy 
within GE should act according to the following two rules. 

1) The cells are placed from the temporary buffer to the 
main buffer, high-priority cells first. If they do not fit, 
then low-priority cells are expelled starting from those 
closest to the head of the queue. 

2a) If the cell at the head of the queue is of high priority, 
then it is served. 

2b) If the cell at the head of the queue is of low priority, 
then either that cell is served, or all the low-priority 
cells from the head of the queue until the high-priority 
cell closest to the head of the queue are expelled and 
that high-priority cell is served. 

Note that the two rules above characterize the optimal 
actions completely for some states and in general up to a 
binary decision of whether all low-priority cells at the head 
of the queue are dropped or none of them. As in the case of 
pushout policies, the above result holds for arbitrary arrival 
processes. Let GEo be the class of policies which satisfy 
the above two rules. We claim that the optimal policy within 
GE should belong to GEo. More specifically we show the 
following. 

Theorem 3.2: For every policy 7r E GE there exists a policy 
ir E GEo such that if the system starts from the same initial 
state under the two policies, and the amval process is identical 
under the two policies, we have 

P ( t )  5 oh@), 

D h ( t ) + D l ( t )  5 D h ( t ) + D ' ( t )  t =  1,2;. . ,  (11) 

where oh, B'(t)  is the number of lost cells of high and low 
priority, respectively, under ir and similarly for Dh ( t ) ,  Dl ( t )  
under T .  
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Note that in the theorem, oh@) + o,"(t) 5 Dh( t )  + D'( t )  
impjies D'( t )  - D'( t )  5 Dh( t )  - Bh(t) ,  which means even 
if D'(t)  > D'(t) ,  the difference between them will be less 
than or equal to that between Dh(t )  and Bh(t). Therefore, 
Theorem 3.2 implies the discarding cost in ir will be less than 
or equal to that in T .  The proof of the theorem relies on the 
following lemma and is similar to that of Theorem 3.1. For a 
proof of the lemma the reader is referred to [ 131. 

Lemma 3.2: For every policy IT E GE there exists a policy 
?TI, which acts according to rules 1 and 2 at slot 1 and is 
appropriately defined for 1 = 2 , 3 , . . . ,  based on T ,  such that 
if the system starts from the same initial state and the arrival 
process is identical under the two policies, then we have 

P ( t )  5 Dh( t ) ,  

P ( t )  + D"(t)  5 Dh( t )  + D,"(t) t = 1,2 , .  

where Dlh( t ) ,  D"(t) is the number of lost cells of high and 
low priority, respectively, under  IT^ . 

Iv .  INTERPRETATION OF THE RESULTS 

The performance of a buffer allocation policy as far as 
the losses is concerned is completely characterized by the 
vector ( P I ,  . . , p k )  of the blocking probabilities p ,  of each class 
z = 1, .., k .  If the blocking probability vectors ( p l ,  . . , p k )  

and (PI, ..,p;C) under two policies T and ir are related as 
p ,  5 pz , z = 1,  . . , k then policy T is better than policy ir under 
most performance criteria regarding losses. If the blocking 
probability vectors of two policies are not related in the sense 
that one is not strictly larger than the other, then the two 
policies are not directly comparable, and one may be preferable 
than the other depending on which traffic class has higher 
priority. 

In Fig. 7 the region ABCD'EFO represents the blocking 
probabilities achievable by any policy in the class of expelling 
policies, while the region AA'O'F'FO represents the region 
of achievable blocking probabilities from policies of the dis- 
carding class. Any blocking probability pair on the lower 
boundary AA'O'F'F of the discarding policies region has 
the property that is not strictly larger than any other blocking 
probability pair achievable by a discarding policy. When we 
are constrained in the discarding class of policies clearly we 
would like to operate the system at some point of the curve 
AA'O'F'F. Any discarding policy that is optimal with respect 
to a linear cost like the one considered in Section I1 will lie on 
the line AA'O'F'F, otherwise there will exist another policy 
with better performance with respect to that linear cost. The 
exact position of the point on the line depends on the selection 
of the coefficients c1, c 2  in the linear cost. One interesting open 
problem is to find how can we achieve a point on AA'O'F'F 
by appropriate selection of the coefficients. 

As in the case of discarding policies, any blocking prob- 
ability pair on ABCD'EF has the property that it is not 
strictly worse than any other pair achievable by a policy in 
the expelling class. Therefore it is desirable to operate the 
system at some point of ABCD'EF.  

The pushout class of policies is the subclass of the ex- 
pelling policies with the property that the sum of the blocking 
probabilities of all classes is constant and equal to the min- 
imum possible. The blocking probability pair of any policy 
in the pushout class will lie on the straight line segment 
CD'. Theorem 3.1 shows that the end points C and D' are 
achievable by the squeeze-out policy where classes 1 and 2 
are given strict priorities, respectively. The points C' and D 
correspond to the pushout policies with priorities given to 
classes 1 and 2, respectively. The point 0' corresponds to 
the policy at which no control is applied (a cell is discarded 
only if the buffer if full). This policy is also achieved by 
the optimal discarding policy where the blocking costs of the 
two classes are the same. Pushout policies do not achieve all 
the performance points achievable by expelling policies since 
it is possible to decrease the blocking probability of a class 
by blocking cells of the other class even before the buffer is 
full, something not allowed by pushout policies. The points in 
the segments AA'BC, D'EF'F are achievable by the rest 
of the expelling policies. Theorem 3.2 shows that for any 
expelling policy with blocking probability pair (PI, p z ) ,  there 
is a policy in GEo with blocking probability pair ( p i , p i )  
such that p l  - p i  2 p i  - p2. In other words, for the optimum 
expelling policy, the reduction of the blocking probability 
of the high-priority class is larger than the increase of the 
blocking probability of the low-priority class. 

V. NUMERICAL RESULTS 

Figs. 4-6 display some of the preliminary numerical re- 
sults we have obtained. The objective was to compare the 
performance of some of the policies discussed in this paper. 
A two-priority system with i.i.d. arrivals was considered. The 
arrival process is derived from a binomial distribution and is 
the same as the one used in [ l l ] .  The arrival rate as well 
as the fraction of traffic from the two priority classes was 
varied. The cost of losing a high-priority cell was varied 
from 10 to lo8 times the cost of losing a low-priority cell. 
Value iteration [12] was used to compute the performance 
of the optimal discarding, expelling and pushout policies as 
well as the default policy. The default policy is the one 
where cells are simply admitted to the main buffer in FIFO 
order, high-priority cells first, and dropped if it is full. We 
considered a system with main and temporary buffer sizes of 
7 and 3, respectively. The squeeze-out and default policies 
corresponded to single points in the plots in Figs 4-6 since 
they are unaffected by the discarding costs. The performance 
of other pushout policies are provided for comparison. In both 
of these policies, low-priority cells from the temporary buffer 
do not push out low-priority cells from the main buffer but 
are dropped instead. In last-in-first-drop and first-in-first-drop 
(LIFD and FIFD) pushout policies high-priority cells pushout 
the low-priority cells that are, respectively, furthest from and 
closest to the head of the queue. Note that for most cases 
considered, there is little difference in the performance of 
the LIFD pushout, FIFD pushout and squeeze-out policies. 
As expected, the expelling policy performed better than the 
discarding policy; the difference between the two policies 



TASSIULAS et al.: OPTIMAL BUFFER CONTROL IN AN ATM NETWORK NODE 381 

0 ,  I 

offered load. 11.6 
Loss 

proh. -2 8 frartioii of r l a s i  1 ’  11 I 
0 - -  a- I 

O 3.4 class 2 -3 
0 1.2 . . .. L 

prob. of 

- 5  < 1 -13’ ’ ’ - 
-13 -12 -11 -10 -9 -8 -i -G  -i -1 - 3  -2  - I  (1 

Loss prob. of class l(high priority) cell (log) 

offered load: 0 8 
fraction of class I: 0 1 

proh. 

class 2 
of -2 

-4 
-12 -11 -10 -9 -8 -7 -6 -5 -4 - 3  -2 -1  0 

Loss prob. of class l(high priority) cell (log) 

off~red laad 0.ti 
fraction of class 1. l1. i  

0 2  
O I  

class 2 -3  

3’ .& 
2 1  

B1 

1 I I I , I I I I 
-9 -8 -7 -6 -5 -1 - 3  -2 -1  0 

Loss proh. of class l(high priority) cell (log) 

Loss 
proh. 

of 
class 2 

(log) 

0 2  

-4  offered load 0.6 
fraction of class 1 0 9 

“ I  

-6 -5 -4 -3  -2  - 1  I1 

0 

LOSS - I  - 6-8 . 6.8 offered load. 0.8 
: 5 ,  4 fraction of class 1: 0.5  

prob. 5 .  

I I , , , 
-i -6 -5 -4  -3  -2 -1 0 

Loss proh. of class l(high priority) cell (log) 

0 

Loss - I  

3-8 U 3-8 offered load- 0.8 
fraction of class I :  0.9 2 ”,’ 

prob. 
of 

class 2 
(log) 

-4 -3 -2 -1 

Loss proh. of class l(high priority) cell (log) Loss prob. of class l(high priority) cell (log) 

Fig. 4. Loss probabilities for two classes with main buffer size=7, temporary 
buffer size=3, discarding cost of a low-priority cell=l, discarding cost of 
high-priority cell changes from 10 to 10’. In the figure “A” stands for the 
squeeze-out policy, “*” for LIFD pushout, “0” for FIFD pushout, “0” for 
discarding policy, “x”  for default policy, which sets the thresholds of both 
classes to be the main buffer size, and ‘‘e’’ for expelling policy. The numbers 
next to the “0” and the “e” stand for the powers of 10, of the discarding costs 
of class 1 cells used to obtain those points. 

depended on the total traffic and relative proportions of the 
two classes of traffic. In many cases, changing the cost of 
dropping a high-priority cell by an order of magnitude or more, 
did not change the loss probabilities for high- and low-priority 
cells. We believe this was due to (a) the discrete nature of 
the problem and the small buffer size made the optimization 
“nonsmooth” and (b) increasing the loss of high-priority cells 
beyond a certain point made no difference to the optimum 
policy since it was already heavily biased in favor of high- 
priority cells. For the expelling policy, after examining the 
results of the value iteration algorithm it was determined that 
the decision of whether to serve the low-priority cell at the 
head of the queue or to serve the high-priority cell closest to 
the head of the queue was almost completely dependent on the 
number of high-priority cells in the main buffer. An expelling 
policy which made this decision based on a threshold on the 
number of high-priority cells in the main buffer achieved losses 
within 1.2% of the cost achieved by the optimal expelling 
policy. This sub-optimal policy could therefore be used as a 
basis for a practical implementation of the expelling policy. 

For larger buffer sizes, a simulation was performed to 
compare the performance of the different policies. The results 
of the simulation are reported extensively in [4] and they 
are briefly summarized in the following. To closely simulate 
bursty traffic, 12 identical binary sources were considered 
generating arrivals. Each binary source consists of an “active” 

Fig. 5. Loss probabilities for two classes with main buffer size=7, temporary 
buffer size=3, discarding cost of a low-priority cell=l, discarding cost of 
high-priority cell changes from 10 to IO8. In the figure ‘‘A” stands for the 
squeeze-out policy, “*” for LIFD pushout, “0” for FIFD pushout, “0” for 
discarding policy, “ x ”  for default policy, which sets the thresholds of both 
classes to be the main buffer size, and “e” for expelling policy. The numbers 
next to the “0” and the “e” stand for the powers of 10, of the discarding costs 
of class 1 cells used to obtain those points. 

and an “inactive” state, and can be characterized by a two- 
state discrete time Markov chain. The traffic source alternates 
between these two states, and the number of time slots spent 
in each state is geometrically distributed. When in an “active” 
state the source generates cells in consecutive time slots, and in 
the “inactive” state no cells are generated. We call the duration 
of a busy period, i.e., the number of time slots that a source 
stays in the active state, a burst. 

Each cell is generated by the above source is fed into a leaky 
bucket server to mark the cell priority. Tokens arrive at the 
leaky bucket deterministically. When the token pool inside the 
leaky bucket is full, newly arriving tokens are thrown away. 
An arriving cell that finds the token pool empty is marked as 
low priority. If there is at least one token in the permit pool, 
then the cell that obtains a token is marked as high priority, 
and the token count is decremented. 

Unless stated otherwise, the main buffer size, is 100. We 
set the mean burst length C = 20 cells and the offered load 
p = 0.9 in most cases. The token pool size is set to the mean 
burst length. The token arrival rate is varied to change the 
mix of high- and low-priority cells. In all cases, p1 represents 
the traffic load of high-priority cells. The proportion of low- 
priority cells is thus (1 - p l ) / p ,  where p is the aggregate 
offered load. 

Four buffer management policies for two classes of cells 
were investigated. Namely, the discarding policy, FIFD (first- 

___ 
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in-first-drop) pushout policy, LIFD (last-in-first-drop) pushout 
policy, and the expelling policy described earlier in this 
section. The optimal pushout policy, the squeeze out policy, is 
essentially the expelling policy with the threshold to expel 
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Fig. 8. High-priority cell losses versus low-priority cell losses. (The thresh- 
old varies from 100 to 0 cells, p from 0.1 to 0.9, p i / p  = 0.9, and mean 
burst length C = 20 cells). 

equal to the buffer size. In both discarding and expelling 
policies, the lower the threshold value is, the better the high- 
priority cell performance we get. In other words, when the 
threshold value is small, more space is reserved for high- 
priority cells, thus the less the high-priority cell loss at the 
expense of low-priority cell loss. Both LIFD pushout and FIFD 
pushout perform similarly, with FIFD always slightly better 
than LIFD as we can see in Fig. 8. It is clear from the graph 
that the curves of the expelling policy cover the largest area 
from the upper right corner among all the policies that we dis- 
cuss here. In other words, the region of performance for both 
high-priority cell losses and low-priority cell losses that can 
be achieved is broader with the expelling policy. Indeed, the 
expelling policy performs universally better than all the other 
policies discussed under the same traffic conditions. Fig. 8 also 
depicts that, as the offered load increases, the improvement 
of the expelling policy over the discarding policy decreases. 
This probably implies that the higher the total load is, the 
less we can do to improve the loss performance. However, 
we consider the expelling policy an attractive solution for real 
traffic, because we see further relative improvement when the 
losses go down to below lop6, which is the range for typical 
operations. 

To provide acceptable QOS, the space control policy must 
give preference to the more loss-sensitive cells. It is thus clear 
that as the traffic mix p l / p  becomes lower, a better QOS can 
be assured. However, because the expelling policy favors the 
high-priority cells more than the other policies by selectively 
serving low-priority cells, the advantage of the expelling 
policy over the discarding policy is more significant when 
the traffic mix p l / p  is smaller (Fig. 9). Fig. 10 shows that 
the improvement of the expelling policy over the discarding 
policy is not very sensitive to the value of mean burst length 
as it varied from 10 to 30 cells. Figs. 11 and 12 show the 
performance gain as the buffer size is increased from 80 to 160 
for two different traffic mixes. Again, the relative improvement 
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of the expelling policy increases for the case of the traffic mix 
corresponding to a larger proportion of low-priority cells. 

VI. DISCUSSION AND OPEN PROBLEMS 

The problem of buffer management at an output link of 
an ATM node was considered in the paper. Three classes 
of policies were studied and optimal policies with respect to 
losses were identified. The classes of policies that have been 
considered are implementable by the architectures proposed 
in [3] using the Sequencer chip. 

Regarding the assumptions about the arrivals, for the ex- 
pelling and pushout policies our results hold for any arrival 
process while for the discarding policies i.i.d. arrivals were 
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length E = 20 cells). 
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Fig. 12. High-priority cell losses versus low-priority cell losses. (The buffer 
size varies from SO to 160 cells, p , / p  = 0.6, p = 0.9, and mean burst 
length C = 20 cells). 

assumed. If Markov-modulated arrivals are considered for the 
discarding class, then the state of the underlying Markov 
chain of the arrival process should be included in the state 
discription of the system in addition to the states of the main 
and temporary buffer. The discarding actions of the optimal 
policy in this case should rely on that underlying state as well. 

Another open problem is the consideration of space priority 
policies for models corresponding to shared memory switches. 
In this case, cells destined to different switch outputs share 
a common buffer. Determining the optimal policies in this 
situation while maintaining cell loss fairness among cells 
destined to different output ports is a challenging problem. 
The ultimate goal remains to be the study of the buffer 
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management control schemes as they interact at the network 
level in different nodes. This interaction determines the end- 
to-end system performance. 

APPENDIX 

Proof of Lemma 2.1: First we show that for every policy 
go E G there exists a policy g1 E G such that 

V,”,(Xo) = VL(X1). 

Let the two systems have identical arrival processes and define 
g1 to take the same actions with go at every slot. Clearly, the 
same cells are dropped at every slot under both policies and 
the ,&discounted cost is the same for xo and X I .  Note that 
since the state of the system is not the same under go and g1 
the two policies are different in general. Nevertheless since the 
number of cells is the same at every slot under go and g1 it 
is indeed possible for g1 to take the same actions as go. From 
the above argument clearly 

VP(X1) = inf V,P(xl) 5 inf v,P(x0) = vP(x0). (12) 
g E G  B E G  

Similarly we can show 

VP(X1) 2 VP(Xo). (13) 

From (12), (13), the lemma follows. 
0 

Proof of Theorem 2.2:  Notice that for any action vector a, 
and state x = ( i , x T ) ,  we have 

c (x ,an)  + P c x l E , y  pxx,(an)v%’) 

BT 
= Cx7‘ + p  p y v q l { i  > O } ( i + ? L  - 1) 

j = n + l  y E X T  

+l{i = 0 } ( i  + n) ,  y). (14) 

In view of (14), in order to show (6), it is enough to show that 

min { ~ ( x ,  a) + p pxXJ (a)VO(x’)) 

- - min {c(x,  a,) + P Pxx/(a,)VP(x’)}.  (15) 

X’EX aES(x) 

X ‘ E X  
,=O;..,BT 

For any action vector a with n nonzero elements we have 

c ( x , a )  + P p x x ~ ( a ) v s ( x ’ )  2 c (x ,an)  
X‘EX 

+P pxxJ(an)VP(xO. (16) 
X’EX 

This is so because first we have D(x ,  a) = D(x ,  a,) = l { i  > 
O } ( i  + n - 1) + l{i = 0 } ( i  + n) ,  therefore 

P pxxJ(a)VP(x’)  = P pxX/(an)vP(xO. (17) 
X‘EX X‘ E ‘Y 

Also, due to the decreasing priority arrangement of the cells 
in the temporary buffer, we can easily see that 

From (17) and (18) we get (16), and that implies 

so (15) follows. 
0 

Proof of Theorem 2.3: Let U = gP(x) in the following. 
Assume U > 0 initially. Since U minimizes the right-hand side 
of the dynamic programming equation, the difference of the 
right-hand side of (6) evaluated at n = U - 1 and at n = U is 

Cxf + p py(VP(i + U - 2,y) - vqi + U - 1,y) )  2 0. 
Y t X T  

We show first that i + U 5 t x ; .  If i + U > tx; then from 
Lemma 2.3 and the definition of the thresholds we get 

0 I Cxf + p p,(VP(i + U - 2,y) - VP(2 + ‘11 - L Y ) )  
Y E X T  

From the definition of y P ( i ,  xT) ,  if several terms achieve 
the minimum on the right-hand side of (9), the maximal value 
of i is used for t,. This implies tx;  = z + U which is a 
contradiction. Assume now that there is a U’ > U such that 

i + U’ 5 t X T  . 
U’ 

Note that GT, + ,l? p,(VP(i + U’ - 2,g) - Vp(i + U’ - 

1 , ~ ) )  2 0 from Lemma 2.3 and from the definition of 
threshold. We will show that this is a contradiction as well. 
Consider the terms 

Y E X T  

CxT + p p y ( V P ( i  + 1 - 2 ,y )  - v q i  + 1 - by)) 
H E X T  

2 0, U 5 15 U’. (19) 

The nonnegativeness of the above terms is implied from 
Lemma 2.3 and the fact that the packets in the temporary 
buffer are stored in decreasing priority order. The difference 
of the right-hand side of (6) evaluated at n = U and at n = U’ 

is 
U‘  

c X1 T + p  p y ( V P ( i + u - 1 , y ) - V ~ ( i + u ’ - l , y ) )  
l=u+l Y E X T  

1=u+1 y E X 7  



TASSIULAS er al.: OPTIMAL BUFFER CONTROL IN AN ATM NETWORK NODE 385 

All the terms of the sum are positive from (19), therefore U 

cannot be the action of the optimal policy. If U = 0, we are 
interested only in the case l(xT) > 0. The proof is similar. 

In case 1, where only a fraction of the low-priority cells 
need to be pushed out, relation (a) holds for the same reason 
as in case 3. In order to see why (c) holds, we just need to 

o observe that 
Proof of Lemma 3.1: We construct the policy 7r1 for t = 

B(1) j-1 

l (X i (1 )  = l}+Dlyl) = L ( 0 ) - C l ( X i ( l )  = 1 )  (c.1) 2,3,  . . . such that (10) holds. More specifically we show that 
for all t = 1 , 2 , . . .  we have 

i=j i=l 

Dyt) 2 D(t ) ,  ( 4  

B(1) j-1 
P ( t )  + Dyt) = P ( t )  + D ( t ) ,  (b) l(Xi(1) = 1 )  +D"l) = L(0) - l(Xz(1) = 1 } ,  (c.2) 

i=l . .  
2=3 

B ( t )  B(t) 

l(x;(t)  = l }  + D y t )  2 l(Xz(t) = 1 )  where L(O), i ( 0 )  are the total number of low-priority cells in 
the system at t = 0. Clearly . .  i=j a = j  

+bl(t), j = 1,. . . , B(t ) ,  (c) j-1 j-1 

l (Xi (1 )  = 1 )  5 l (Xz(1)  = l } .  (c.3) 
and xi(t)  = Xi(t) ,  B( t )  < i 5 B, ( 4  i=l i=l  

where B(t )  is the maximum buffer position at time t that 
contains one of the cells that were in the buffer at time t = 1. 
The variable B(t )  is defined at time t ,  just after the accepting 
and discarding decisions have been made. If at time t the 
buffer contains no cell that was in the system at time t = 1 
then B(t )  = 0. Because of the FCFS property of the policies 
considered, if B(t )  > 0, then all packets in the buffer positions 
1, .., B(t )  were in the system at time t = 1. Notice that B(1) is 
the same for all policies in GP since a cell cannot be discarded 
if the buffer is not full. B(t )  is defined similarly to B(t )  for 
the system operated under policy i?. The relations (c), (d) are 
auxiliary relations needed to show that (a), (b) hold for all t. 

If all the cells in the temporary buffer fit into the main buffer 
without discards, then the state of the main buffer at t = 1 is 
identical under policies ii and 7r1. If we let 7r1 act identically 
to ii at t = 2 , .  . . then the states of the system under the two 
policies match and (a)-(d) hold trivially. 

If all the cells do not fit in the main buffer without discarding 
then we proceed as follows. We show first that (a)-(d) hold for 
t = 1. Then we show that if (a)-(d) hold for t = T and 7r1 is 
appropriately defined at t = T + 1, based on the action that i? 
takes in the same slot, then (a-d) hold at slot T + 1 as well. 
By induction we conclude that policy 7r1 can be defined in the 
slots 2 , 3 ,  . . . such that (a)-(d) hold. 

For t = 1 we have by definition B( t )  = B(t )  = B,  hence 
(d) holds trivially. Also we can easily see that (b) holds. For 
relations (a), (c) we distinguish three cases, for the state of the 
system at t = 1, which are illustrated in Fig. 2. 

In case 2, where the number of high-priority cells in the 
main and temporary buffer exceed the capacity of the main 
buffer, relations (a,c) easily follow since D"(t)  is equal to 
the total number of low-priority cells in the system. 

In case 3, where all the low-priority cells that were in the 
main buffer at t = 0 are discarded at t = 1, relation (a) 
follows if we think that D"(t)  has the maximum possible 
value under any policy in GP given that the main buffer is full 
at t = 1. Relation (c) follows if we see that the main buffer 
has the smallest possible number of low-priority cells under 
any policy and they are all at the end of the buffer. 

Since according to 7rP0 we push out the largest number of 
low-priority cells, and we start from the head of the queue, 
relations (c.l), (c.2), and (c.3) imply (c). 

Now assume that relations (a)-(d) hold at T.  Define the 
policy TI at T + 1 based on the action of the policy ii at 
the same slot as follows. Push out (B(7)  - 1)+ - B(T + 1) 
cells starting from the low-priority cells closest to the server 
that reside in positions 1,. .. , B(T) and continue with the 
high-priority cells in the same positions. For the positions 
B(T + l), . . . , B emulate ir at T + l , ,  i.e., accept the same 
cells and put them in the same positions of the main buffer. 

We argue in the following tha! the above con_struction is 
possible. Note first that B(T) = B(T) ,  therefore B(T + 1) 5 
(B(T) - l)+ and the first part of the construction is possible. 
Furthermore note that the state of the buffer in positions 
B(T),  . . . , B is identical under the policies 7r1, ii and also 
the state of the temporary buffer is identical under the two 
policies. Hence 7r1 can indeed emulate ii for the positions 
B(T + l), . . . , B and the second part of the construction is 
feasible as well. 

We argue in the foll_owing that (a)-(d) hold for t = 7 + 1. 
Clearly B(T + 1) = B(T + 1) and (b), (d) follow immedi- 
ately for T + 1. Relation (a) for t = 7 + 1 follows from 
relation (a) for t = T ,  the fact that the maximum possible 
number of low-priority cells are expelled under 7 r P o  from 
positions ~ , . . . , B ( T )  of the main buffer, and the fact that 
the main buffer is identical under the two policies in positions 
B(T),  . . . , B. Relation (c) for t = T + 1 follows from relation 
(c) for t = 7 ,  and the fact that the maximum possible number 
of low-priority cells are expelled under 7 r P o  starting from the 
cells closest to the head of the queue. This completes the 
induction step and the proof.0 

Proof of Theorem 3.1: We define inductively a sequence of 
policies r k ,  IC = 1,2 ,  . . . with the property that policy T k  

acts identically to policy 7 r P o  for the first IC slots. Policy 71-1 

has been defined in Lemma 3.1. Policy r k + 1  is defined based 
on T k  as follows, Repeat the construction of Lemma 3.1 with 
policies r k  and "k+l in place of ii and 7r1 respectively and 
the construction starting at time t = IC + 1. We can easily see 
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from Lemma 3.1 that we have 1131 L. Tassiulas, Y. C Hung, and S. Panwar, “Optimal buffer control during 
congestion in an ATM network node,” Polytechnic Univ., Tech. Rep. 
CATT-93-66, 1993. 

[14] Y. Yeh, M. G. Hluchyj, and A. S. Acampora, “The Knockout Switch: 
A simple, modular architecture for high-performance packet switching,” 
IEEE J .  Select. Areas Commun., vol. SAC-5, pp. 1274-1283, Oct. 1987. 

D(”l)l(t) 2 B,”l(t), 

D(“+l)l(t) + D(”+l)h(t) = D”(t) + D“(t) t = 1,2,  . . . 
(20) 

where D”(t), D‘“’(t) are the numbers of dropped high and 
low-priority cells, respectively, by slot t when policy 7Tk 

schedules admissions. Under policy n k  the system evolves 
identically as under policy +” until slot k .  Therefore we have 

D y k )  = D y k )  2 D ( y k )  2 . . ’ 2 D ( k ) ,  

D y k )  + D“k) = D“(k)  + D y k )  

from (20) and Lemma 3.1. 
0 
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