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On the Performance of a Dual Round-Robin Switch
Yihan Li, Shivendra Panwar, H. Jonathan Chao

Abstract— The Dual Round-Robin Matching (DRRM)
switch [2] [3] has a scalable, low complexity architecture
which allows for an aggregate bandwidth exceeding 1 Tb/s
using current CMOS technology. In this paper we prove that
the DRRM switch can achieve 100% throughput under i.i.d.
and uniform traffic. The DRRM is the first practical match-
ing scheme for which this property has been proved. The
performance of the DRRM switch is then studied and com-
pared with the iSLIP switch. The delay performance un-
der uniform traffic and the hot-spot throughput of DRRM
is better than that of iSLIP, while the throughput of iSLIP
under some non-uniform traffic scenarios is slightly higher
than that of DRRM. Since throughput drops below 100%
under nonuniform traffic, we also examine some variations
of the DRRM matching scheme for nonuniform traffic.

Keywords— switching,scheduling,Virtual Output Queue-
ing,Dual Round Robin.

I. INTRODUCTION

H
IGH speed packet switches are necessary to meet the
exponential growth of multimedia and other Internet

traffic. Fixed-length switching technology is widely ac-
cepted as an approach to achieve high switching efficiency.
Variable-length IP packets are segmented into fixed-length
“cells” at inputs and are reassembled at the outputs.

In addition to using cell switching, it is important that
a scalable architecture be employed to accommodate in-
creased switching needs. Output Queuing (OQ) switches
have the optimal delay-throughput performance for all
traffic distributions, but the N-times speed-up in the fabric
limits the scalability of this architecture. An Input Queu-
ing (IQ) switch is desirable for high speed switching, since
the internal operation speed is only slightly higher than the
input line. However, an Input Queuing switch has a critical
drawback [7], [8]: the throughput is limited to 58.6% due
to the head-of-line (HOL) blocking phenomena.

One scheme to overcome the drawbacks and combine
the advantages of an Input Queuing switch and an Out-

Yihan Li is a Ph.D. candidate in the Electrical Engineering
Department, Polytechnic University, Brooklyn, NY 11201, email:
yli@photon.poly.edu.

Shivendra Panwar and H. Jonathan Chao are on the faculty of the
Electrical Engineering Department, Polytechnic University, Brooklyn,
NY 11201, email: panwar@catt.poly.edu, chao@antioch.poly.edu

This work is supported in part by the New York State Center for
Advanced Technology in Telecommunications (CATT), and also in
part by the National Science Foundation under grants ITR0081527 and
ITR0081357 .

put Queuing switch is a Virtual Output Queuing (VOQ)
switch, in which each input maintains N queues, one for
each output. By using VOQ, no addition speedup is re-
quired and HOL blocking can be eliminated. On the other
hand, it is more complex to implement a VOQ switch than
an IQ switch. It is important to adapt an efficient schedul-
ing algorithm to avoid contention at inputs and thus guar-
antee high performance.

Considerable work has been done on improving perfor-
mance using the matching algorithms. It has been proved
that by using some maximum weight matching algorithm
100% throughput can be reached for independent arrivals
[11], [12], [13]. But maximum match is not practical to
implement in hardware due to its complexity, and may
not guarantee fairness and quality of service. A num-
ber of practical maximal matching algorithms have been
proposed [4], [9], [14], but maximal matching algorithm
cannot achieve as high a throughput as maximum match-
ing algorithms. Iterative algorithms as PIM [1] and iSLIP
[10], [13], use multiple iterations to converge on a maxi-
mal matching.

One way to improve the performance of a VOQ switch
is to increase the speedup of the switch fabric. In [5],
[9], [17] a Combined Input and Output Queuing (CIOQ)
switch with some matching algorithms have been proved
to reach up to 100% throughput with a speedup of 4 or 2.
Charny et al [4] showed that a speedup of 4 is sufficient
to ensure 100% asymptotic throughput with any maximal
matching algorithm. By using a fluid model, Dai and Prab-
hakar [6] proved that any CIOQ switch, by using any max-
imal matching algorithm, can deliver 100% throughput at
a speedup of 2, when the input traffic satisfies the strong
law of large numbers and does not oversubsribe any input
or output.

Then what is the maximum throughput a VOQ switch
can achieve without speedup? In this paper we will show
that with a matching algorithm proposed by Chao et al
[2] [3] called the Dual Round-Robin Matching (DRRM)
achieves 100% throughput under i.i.d. and uniform traf-
fic. Furthermore, the DRRM scheme provides fairness and
prevents starvation. It has lower implemention complex-
ity compared to algorithms with similar performance. In
section II we will describe the DRRM algorithm in de-
tail. In section III, the proof that in a DRRM switch 100%
throughput can be achieved is presented. A similar proof
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for iSLIP will also be presented. The DRRM switch per-
formance under uniform and nonuniform traffic will be
studied in sections IV and V, respectively. Under hot-
spot conditions, an overloaded hot-spot output link main-
tains 100% throughput. Since the DRRM switch does not
achieve 100% throughput under nonuniform traffic, there-
fore in section VI we will discuss some variations of the
DRRM scheme to accommodate nonuniform traffic.

II. THE DRRM ALGORITHM

In the DRRM scheme [2] [3], each input port main-
tains N VOQs. An input arbiter at each input selects a
nonempty VOQ according to the round-robin service dis-
cipline. After the selection, each input port sends one re-
quest, if any, to an output arbiter. An output arbiter at each
output receives up to N requests and chooses one of them
based on the round-robin service discipline and sends a
grant to the chosen input port. A detailed description of
the two step algorithm follows:

Step 1: Request.1 Each input sends an output re-
quest corresponding to the first nonempty VOQ in a fixed
round-robin order, starting from the current position of the
pointer. The pointer remains at that nonempty VOQ if the
selected output is not granted in step 2. The pointer of the
input arbiter is incremented by one location beyond the se-
lected output if, and only if, the request is granted in step
2.

Step 2: Grant. If an output receives one or more re-
quests, it chooses the one that appears next in a fixed
round-robin schedule starting from the current position
of the pointer. The output notifies each requesting input
whether or not its request was granted. The pointer of the
output arbiter is incremented to one location beyond the
granted input. If there are no requests, the pointer remains
where it is.

Figure 1 shows an example of the DRRM arbitration al-
gorithm. In a request phase, each input chooses a VOQ
and sends a request to an output arbiter. Assume input 1
has cells destined for both outputs 1 and 2. Since its round-
robin pointer, r1, is pointing to 1, input arbiter 1 sends a
request to output 1 and updates its pointer to 2 after the
request is granted by output 1. To consider output 3 in the
grant phase, since its round-robin pointer, g3, is pointing
to 3, output arbiter 3 grants input 3 and updates its pointer
to 4.

In iSLIP [10], [13], each input also maintains N VOQs
for N outputs. The three steps of each iteration operate in
parallel on each input and output:

1Note that this step is slightly but significantly different from the first
step of DRRM as presented in earlier papers [2][3].
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Fig. 1. An example of the dual round-robin scheduling algo-
rithm.

Step 1: Request. Each input sends a request to every
output for which it has a queued cell.

Step 2: Grant. If an output receives any requests, it
chooses the one that appears next in a fixed round-robin
schedule, starting from the current position of the pointer.
The output notifies each input whether or not its request
was granted. The pointer is incremented to one location
beyond the granted input if, and only if, the grant is ac-
cepted in Step 3.

Step 3: Accept. If an input receives a grant, it accepts
the one that appears next in a fixed, round-robin schedule
stating from the highest priority element. The pointer to
the highest priority element of the round-robin schedule is
incremented to one location beyond the accepted output.

In DRRM, one arbitration has two data exchanges: (1)
inputs send a total of up to N requests to outputs, and
(2) outputs send grants to inputs. In iSLIP, three data ex-
changes are needed: (1) inputs send a total of up to N2

requests to outputs, (2) outputs send grants to inputs, and
(3) inputs send accept signals to outputs. In one matching
cycle, DRRM has one less operational step than iSLIP, and
less data exchange is needed between inputs and outputs.
Thus allows the DRRM arbitration mechanism to be imple-
mented in a distributed manner to make the switch simpler
and more scalable. As described in [3], a terabit switch us-
ing the DRRM algorithm is achievable with existing elec-
tronic technology. With 0.25 �m CMOS technology, the
arbitration time can be as small as 10ns. This allows for
a 256x256 switch with an incoming line bandwidth of 5
Gb=s and an internal speedup of 2.

The DRRM algorithm is fair and does not suffer from
starvation. If input i successfully sends a cell to output j in
one time slot, their pointers will all move one location and
separately point to the output and the input which waited
the longest. Thus output j and input i will have the lowest
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priority to be chosen by input i and output j in the next
time slot. If input i requests for output j but is not granted
by output j in one time slot, it will keep requesting for
output j until it receives a grant. An input request will
wait for at most N � 1 time slots before it is granted by
the output. These advantages are also present in the iSLIP
architecture.

With more than one iteration, the iSLIP algorithm can
achieve better performance [10][13]. In this paper, for
a fair comparison with DRRM without speedup, we will
only consider the iSLIP algorithm with one iteration. By
means of a simulation, the iSLIP algorithm with a single
iteration has been demonstrated to achieve 100% through-
put when the traffic is independent and uniform [10][13].
In the next section we will prove that DRRM can achieve
100% throughput under the same conditions. It turns out
that a similar proof allows us to prove the same result for
iSLIP.

III. PROOF OF 100% THROUGHPUT

Theorem 1: The maximum throughput of the DRRM
switch is 100% under uniformly distributed i.i.d. traffic.

Proof:
Consider the case of heavy traffic such that none of the

N2 input queues is empty at any time. We will show that
the maximum throughput is 100% by showing that under
heavy traffic, after a finite time, the pointer of each input
arbiter will point to an output different from all other input
pointers, so that every output will be fed by a cell in every
time slot.

Recall that the DRRM arbitration scheme has the fol-
lowing rules:
� At any input, if the pointer points to k in a time slot, and
it is selected by the kth output arbiter, in the next time slot
the pointer points to (k + 1)modN ; if it is not selected, in
the next time slot the pointer is still at k.
� At any output k, if only one input arbiter pointer points
to k, this input will be selected by output k; if there are m
(m > 1) input arbiter pointers pointing to output k, one of
them will be selected.

We define a vector Xi = (x1;i; : : : ; xk;i; : : : ; xN;i) to
express the state of output arbiters; in time slot i there
are xk;i input arbiter pointers pointing to output k, k =

1; : : : ; N , 0 � xk;i � N ,
PN

k=1 xk;i = N . If at time slot i,
xk;i = 1, k = 1; : : : ; N , which indicates that each output
is pointed by an input arbiter pointer, then the throughput
is 100% in this time slot. We will now proceed to show
Xi = (1; 1; : : : ; 1) for all i � N�1. Thus a throughput of
100% can be sustained indefinitely after N � 1 time slots.

To simplify the notation, we will drop the mod N, i.e.,
(k+l) mod N will be represented by k+l. Using the DRRM

arbitration rules to the vector Xi, we get:

xk;i+1 =

8>>><
>>>:

0 xk;i � 1, xk�1;i = 0

xk;i � 1 xk;i > 1, xk�1;i = 0

1 xk;i � 1, xk�1;i > 0

xk;i xk;i > 1, xk�1;i > 0

(1)

By cyclically shifting Xi to the left by one slot every slot
time, we get another vector Yi = (y1;i; : : : ; yk;i; : : : ; yN;i).
This Yi is defined as follows: in time slot 0,

Y0 = X0 (2)

i.e., yk;0 = xk;0, k = 1; : : : ; N , and in time slot m � 0,

yk;m = xk+m;m; k = 1; : : : ; N (3)

At any time slot, yk;i represents the state of one output
arbiter. If, and only if, in time slot i, yk;i = 1 for all k =

1; : : : ; N , then xk;i also equals to 1 for all k. Therefore it is
sufficient to show that Yi = (1; 1; : : : ; 1) for all i � N � 1

to prove the theorem.
According to (1), (2), and (3), we get

yk;i+1 =

8>>><
>>>:

0 yk+1;i � 1; yk;i = 0 (condition1)
yk+1;i � 1 yk+1;i > 1; yk;i = 0 (condition2)

1 yk+1;i � 1; yk;i > 0 (condition3)
yk+1;i yk+1;i > 1; yk;i > 0 (condition4)

(4)
From (4), by considering the third and fourth conditions,

we can conclude that whenever yk is larger than 0, it will
always be larger than 0 after that. According to this con-
clusion, if in time slot i, yk;i = 1 for all k = 1; : : : ; N ,
then for any time slot j > i, all yk;j will always be larger
than 0. Since there are N inputs and N outputs, andPN

k=1 yk = N , after time slot i, yk = 1, k = 1; : : : ; N ,
which indicates that xk = 1 for all k and the throughput
will always be 100%. We will next prove that with any
initial state Y0, in a finite number of time slots M , where
M is no more than N � 1, we will always have yk;M = 1,
k = 1; : : : ; N .

The state vector Y and its state transitions can be ex-
pressed as a game as shown in figures 2 and 3. In the
game, we have N balls placed in N boxes. In time slot i,
there are yk;i balls in the kth box, k = 1; : : : ; N . We will
show that no matter how many balls there are in each box
at the beginning, after at most N � 1 time slots, every box
will always contain exactly one ball.

The rule that determine the movement of the balls in the
boxes is as follows:

In time slot i, if box k is occupied and has m balls, m >
0, then in time slot i + 1, one of the m balls will stay in
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box k and the others, if any, will move to box k� 1. Since
all the balls are identical, without losing generality we will
require that the ball which arrived at box k earliest will
stay in and occupy box k, and the others, if any, will move
to box k � 1. If more than one ball arrives at an empty
box, one of them is picked arbitrarily to stay there. Thus if
a ball is put into an empty box, it stays there indefinitely.

Figures 2 and 3 show two examples of the movement
of balls. In the figures, each black ball occupies a box
permanently and white balls keep moving until they find
an empty box and occupy it. We will prove that each of
the N balls will find a box to occupy permanently in no
more than N � 1 time slots, so that every box will always
have one ball in it.

We will now show that the game corresponds to the state
transitions of Yi as defined in (4). By following the rules
above, and by knowing how many balls there are in box k
and box k+1 in time slot i (yk;i and yk+1;i), we can get the
number of balls in box k in time slot i+ 1 (yk;i+1), which
is identical with (4):
� Condition 1: If in time slot i, box k is empty and box
k+1 has at most one ball, then in time slot i+1, box k is
still empty.
� Condition 2: If in time slot i, box k is empty and box
k + 1 has j balls, j > 1, then in time slot i + 1, one of
these j balls stays in box k + 1 and box k will have the
other j � 1 balls.
� Condition 3: If in time slot i, box k has j balls, j > 1,
and box k+1 has at most one ball, then in time slot i+1,
no ball will move from box k + 1 to box k, and only one
ball (which permanently occupies box k) will stay in box
k.
� Condition 4: If in time slot i, there are m balls in box k
and j balls in box k + 1, m > 1 and j > 1, then in time
slot i+1, one of the m balls (which permanently occupies
box k) stays in box k and others move to box k� 1, one of
the j balls (which permanently occupies box k + 1) stays
in box k+1 and j�1 balls move to box k; box k will then
have j balls.

In time slot 0, if a solitary ball occupies a box, that
means it has already found its final box. What we need
to show is that if a ball does not occupy a box in time slot
0, it will find its box within N � 1 time slots.

Suppose in time slot 0, box k is occupied and there is a
white ball (named ball B) in it, then in the next time slot
ball B must move to box k � 1. We will next use a proof
by contradiction. Assume that until time slot N � 1 ball
B still cannot find its own box to occupy, which means it
moved in every time slot and traveled N �1 boxes that are
all occupied. Since box k is already occupied, all N boxes
are occupied by N balls. With ball B, there will be totally

Time slot 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

Time slot 6

Time slot 0

Time slot 7

0Y

7Y

=(0,0,0,1,1,1,1,4)

=(1,1,1,1,1,1,1,1)

Fig. 2. The states of the system in 8 time slots when N=8 with
the initial state Y0=(0,0,0,1,1,1,1,4)

N + 1 balls in the system, which is impossible. So the
assumption is wrong and ball B will find a box to occupy
within N � 1 time slots.

Therefore we conclude that any ball can find a box to
occupy within N � 1 time slots, and from time slot N �

1, each box has one ball in it. Thus Yi, yk;i = 1, k =

1; : : : ; N , i � N �1, for any Y0, which indicates that after
time slot N � 1, each input arbiter pointer will point to
a different output, and will continue to do so indefinitely.
This guarantees a throughput of 100%.

Theorem 2: The maximum throughput of the iSLIP
switch is 100% under uniformly distributed i.i.d. traffic.

Proof:
We will show that under heavy traffic such that none of

the VOQs is empty, the maximum throughput is 100% by
showing that after a finite time, each input will be pointed
by an output arbiter different from all other inputs, so that
every output will be fed by a packet in every time slot.

Under heavy traffic the iSLIP scheduling algorithm re-
duces to the following rules:
� In any time slot each input sends requests to every out-
put.
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Time slot 1

Time slot 2

Time slot 3

Time slot 4

Time slot 5

Time slot 6

Time slot 7

Time slot 0

0Y =(0,1,0,0,1,2,4,0)

7Y =(1,1,1,1,1,1,1,1)

Fig. 3. The states of the system in 8 time slots when N=8 with
the initial state Y0=(0,1,0,0,1,2,4,0)

� At any output, if the pointer points to k in a time slot,
this output grants the request from the kth input. If the
grant is selected to be accepted by the kth input arbiter, in
the next time slot the pointer points to (k + 1)modN ; if it
is not selected, in the next time slot the pointer is still at k.
� At any input k, if only one output arbiter pointer points
to k, this output will be selected by input k; if there are m
(m > 1) output arbiter pointers pointing to input k, one of
them will be selected.

We define a vector Vi = (v1;i; : : : ; vk;i; : : : ; vN;i) to ex-
press the state of input arbiters; in time slot i there are vk;i
output arbiter pointers pointing to input k, k = 1; : : : ; N ,
0 � vk;i � N ,

PN
k=1 vk;i = N . If at time slot i,

vk;i = 1, k = 1; : : : ; N , which indicates that each input
is pointed by an output arbiter pointer, then the throughput
is 100% in this time slot. We will now proceed to show
Vi = (1; 1; : : : ; 1) for all i � N � 1. Thus a throughput of
100% can be sustained indefinitely after N � 1 time slots.

To simplify the notation, we will drop the mod N, i.e.,
(k+l) mod N will be represented by k+ l. Using the iSLIP
arbitration rules to the vector Vi, we get:

vk;i+1 =

8>>><
>>>:

0 vk;i � 1, vk�1;i = 0

vk;i � 1 vk;i > 1, vk�1;i = 0

1 vk;i � 1, vk�1;i > 0

vk;i vk;i > 1, vk�1;i > 0

(5)

Note that the evolution of Vi is identical to that of Xi as
defined in equation (1).

Thus by using the same method as in the proof of The-
orem 1, we can prove that with any initial state V0, in a
finite number of time slots m, where m is no more than
N � 1, we will always have vk;m = 1, k = 1; : : : ; N ,
which guarantees a throughput of 100%.

IV. PERFORMANCE ANALYSIS AND
SIMULATION UNDER UNIFORM TRAFFIC

In this section the performance of DRRM scheme with-
out speedup under i.i.d. and uniform traffic load is pre-
sented. We will also compare its performance with the
performance of the iSLIP switch with one iteration.

Figure 4 shows the average delay a cell may suffer in
DRRM switch as a function of traffic load for different size
of switches. Note that delay for a given load increases with
switch size. As in [10], under heavy load, the DRRM al-
gorithm serves each VOQ once every N cycles. Thus the
queues approximate an M/D/1 queue with arrival rates �

N

and deterministic service of N cell times length. For the
DRRM switch under a heavy load of Bernoulli arrivals, the
delay D for arrival rate � per slot time can be approxi-
mated by:

D =
�N

2(1 � �)
(6)

The above expression explains the roughly linear in-
crease in delay with N under heavy loads seen in figure
4. The average delay for an M/D/1 system is shown in fig-
ure 5, compared to a DRRM switch for the same value of
N .

Figure 6 shows the performance of a 16x16 DRRM
switch under bursty traffic. The traffic model we use is
an on-off Markov-modulated process. Note that the delays
increase approximately linearly with burst length.

Figure 7 compares the performance of a DRRM switch
and an iSLIP switch with a size of 16x16 under i.i.d. and
uniform traffic. The 95% confidence level intervals are
also shown in the figure, but may be too small to be vis-
ible. The DRRM switch has somewhat higher delays for
moderate loads, but has better performance for high loads.
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Fig. 4. The performance of DRRM switch with different size
under uniform i.i.d. Bernoulli arrivals.

V. PERFORMANCE UNDER ONE
NONUNIFORM CASE - HOT-SPOT

We have shown the performance of DRRM when the ar-
rival traffic is uniformly distributed destined to all outputs.
In this section we will discuss the performance under one
typical nonuniform traffic - the so-called “hot-spot” case.

“Hot-spot” traffic refers to a traffic pattern where many
inputs send traffic one output line (the hot-spot) at the same
time. This may lead to the output being loaded more than
100%. Such a condition may exist for a transient period
of time. Traffic engineering, traffic control and routing
should prevent such situations from occurring for extended
periods of time. The hot-spot model we use here is the
same as that in [16], [15]: a high rate of traffic is destined
to one hot-spot and all other traffic is distributed to other
outputs uniformly. Define h as the fraction of cells des-
tined to the hot-spot. Then the cell arrival rate r on one
input port can be expressed as:

r = rh+ (1� h)r (7)

For one input, a cell rate of rh is destined to the hot-
spot and (1�h)r is destined uniformly to the other N � 1

outputs. Thus from all the inputs, there is a total cell rate
of rhN destined to the hot-spot output. When h = 1

N
, the

traffic is uniform. Another special case is h = 1, when all
arriving cells are destined to the hot-spot.

From simulation results, when r is 1:0, the hot-spot out-

0

10

20

30

40

50

60

70

80

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
ea

n 
ce

ll 
de

la
y 

(s
lo

ts
)

load

DRR
M/D/1

Fig. 5. Comparison of the average delay in a DRRM switch
and an M=D=1 system with N = 16 and uniform i.i.d.
Bernoulli arrivals.

put line throughput in DRRM switch is found to be 100%
for any h in the range ( 1

N
,1). When more traffic is destined

to the hot-spot, the VOQs related to the hot-spot have long
queues, and only a few cells wait in the other VOQs. Some
of the VOQs corresponding to other outputs may be empty.
The hot-spot will always get at least one request from all
inputs in each time slot, and no matter which request is
granted, one cell will be sent from an input to the hot-spot.

The iSLIP scheme with one iteration was also examined
under the same condition. Figure 8 shows the hot-spot
throughput of a 16x16 iSLIP switch as a function of h.
We can see that for a range of h the hot-spot throughput is
well under 100%. This is due to the fact that with iSLIP
an input can request for multiple outputs at one time. In
some time slots, more than one input requests the hot-spot
output, while at the same time each input can request for
other outputs as well. The hot-spot output will grant one
input among all the requests. If the chosen input accepts
the grant, the hot-spot output will have a successful cell in
this time slot. On the other hand, if the chosen input gets
more than one grant and accepts another one, then in this
time slot the hot-spot output will be unmatched even if it
is the choice of several other inputs. This is different from
the situation with a DRRM switch, in which an input will
request for at most one output in each time slot, and if the
request is granted, the input will always accept it.

For iSLIP when h is close to 1

N
, the traffic pattern is
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nearly uniform and the throughput is close to 100%. Sim-
ilarly, as h approaches 1, the hot-spot throughput will ap-
proach 100%. The reason is that when h is large, only a
few incoming cells are destined to other outputs and there-
fore those VOQs will be empty at most of the time. It is
more likely that some inputs will almost always only re-
quest for the hot-spot output and will then accept the grant
if they are offered one by the output.

VI. VARIATIONS FOR NONUNIFORM TRAFFIC

In this section we study the DRRM switch performance
for another i.i.d. nonuniform case and discuss a variation
of the DRRM algorithm.

In the last section, we considered one nonuniform traffic
pattern - hot-spot, in which the arrival rate for the hot -spot
output can be more than 100% when the arrival rate to each
input is 100%. We will consider a nonuniform traffic pat-
tern, where the loading for each input and output is 100%,
but the cells arriving at one input are not uniformly dis-
tributed to each output. Since the DRRM switch is fair uni-
formly across VOQs, some heavily load VOQs may only
be served with a rate no higher than other lightly loaded
VOQs. This is not desirable since some of the VOQs will
have unacceptable loss due to buffer overflow. In this sec-
tion the behavior of DRRM switch is studied and three vari-
ations of it are discussed for nonuniform traffic patterns.
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Fig. 7. Comparison on the performance of a DRRM switch and
an iSLIP switch with size 16 under i.i.d. uniform Bernoulli
arrivals.

The nonuniform traffic pattern we consider in this sec-
tion is as follows. The arrival rate for each input is 100%,
while the loading for each output is also 100%; each in-
put has a “hot” output, with a fraction p of cells from an
input are destined to its hot output, and other cells are uni-
formly destined to other outputs; each input has a hot out-
put which is different from any other input’s hot output.
p = 1

N
corresponds to the uniform case. When p = 1, all

the arriving cells are destined to their respective hot out-
puts. In this case since the hot output for each input is dif-
ferent from others, each input arbiter points to a different
output in any time slot, and the throughput for any scheme
discussed in this section is 100%. We will therefore only
consider 1

N
� p < 1.

We define a ratio r of the cell rate from one input to its
hot output, p, to the cell rate from the input to one of the
other outputs, 1�p

N�1
, as follows:

r =
p

1� p
(N � 1) (8)

Another useful ratio is s, the ratio of the desired cells
successfully transferred from one input to its hot output to
the number of cells successfully transferred from the input
to another output. If s is close to r, all VOQs are receiving
fair service; if not, the scheduler is favoring one type of
VOQ over the other.

Simulation results show that a DRRM switch with a
speedup of 2 delivers 100% throughput. The throughputs
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Fig. 8. The throughput of the hot-spot output line for a 16x16
iSLIP switch as a function of h. The DRR switch achieved
a throughput of 1.0 for all h.

of a DRRM switch without speedup and an iSLIP switch
of size N = 4, 8 and 16 under the nonuniform traffic de-
scribed above are shown in figure 9. The DRRM achieves
somewhat lower throughput than iSLIP for values of p
around 0.6, but the two switches have similar performance
for other values of p.

In order to improve performance under nonuniform
traffic and give the VOQs destined to hot outputs more
chances than others, we consider three weighted DRRM
schemes: for an input i and its hot output j,

� Scheme (a) modify input round-robin schedule so that m
visits per cycle are given at input i for the hot output j;
� Scheme (b) modify output round-robin schedule so that
m visits per cycle are given at output j for input i;
� Scheme (c) modify both input and output round-robin
schedule scheme as in schemes (a) and (b).

We examined these three schemes under 100% traffic
load by simulations. To simplify the notation, and without
losing generality, we assume that the hot output of input i
is output i. In scheme (c), output i uses the same round-
robin sequence as input i. Figure 10 shows one example of
the modified round-robin sequence in a 4x4 switch when
m = 2, and we use these sequences to get the performance
shown in Figure 11.

Figure 11 shows the system throughput for a 4x4 switch
as a function of p with the original DRRM schemes and the
weighted DRRM schemes with m = 2. From figure 11 we
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Fig. 9. Comparison of throughput for a DRR switch and an
iSLIP switch under nonuniformly distributed arrivals.

3 2 0 122

1 0 2 30 0

2 31 01 1

0 3 1 233

Round-robin SequenceInput(Output) Port Number 

Fig. 10. An example of the modified round-robin sequences for
a 4x4 switch

can see that when m = 2, schemes (a) and (b) have even
lower throughput for some ranges of p than the original
DRRM scheme. Scheme (c) improves the throughput when
0:4 < p < 0:7 which corresponds to 2:0 < r < 7:0 and
has a similar or lower throughput for other ranges of p.

Figure 12 shows the ratio s as a function of p under the
same condition as in figure 11. We find that when p is large
enough, all the schemes including the original DRRM lead
to similar values of s. As p increases, s is increasingly
close to r. When p = 0:7 and r = 7, s is around 4:5;
when p = 0:9 and r = 27, s is around 24. The inability of
the weighted DRRM schemes to fully compensate for the
nonuniform traffic is explained by the mismatch between
s and r.
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We also studied the weighted DRRM schemes withm �

3, and the simulation results show that they do not work
well. Scheme (b) with m � 3 and m = 2 have similar per-
formance. For scheme (a) and (c) with m � 3, s is similar
to those with m = 2, while the throughput is almost al-
ways lower than the original DRRM. This is explained by
how the DRRM arbiter updates pointers. With the vari-
ation, input arbiters give the hot output more chances in
one round-robin cycle. When the input pointer is point-
ing to the hot output while the hot output is busy, the input
pointer will not update until its request is granted after sev-
eral time slots, which will block the cells in other VOQs
that are destined to a free output. When m is too large,
this influence becomes greater and decreases the overall
system throughput.
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Fig. 11. The throughput as a function of p for DRRM and three
weighted DRRM schemes.

According to the analysis and simulation results, we
conclude that when p is within some intermediate range,
Scheme (c) will lead to a better system performance.
When p is close to 1

N
or 1, the original DRRM scheme

works well.

VII. CONCLUSIONS

The DRRM algorithm uses round-robin arbitration on
both the input and output sides. It is simple to imple-
ment and is capable of switching at terabit speeds. In this
paper, we prove that a switch with the DRRM matching
scheme achieves 100% throughput under uniform traffic.
Using a similar proof technique, we also show that the iS-
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Fig. 12. s as a function of p for DRRM scheme and three
weighted DRRM schemes compared to r

LIP matching scheme achieves 100% throughput uder uni-
form traffic. Under one typical nonuniform traffic - hot-
spot, the hot-spot output of a DRRM switch delivers 100%
throughput. For other nonuniform traffic distributions, the
throughput drops below 100%. A weighted variation of
DRR is shown to improve performance for nonuniform
traffic distributions. In future work, we will further exam-
ine the DRRM switch performance for nonuniform traffic
and for speedup factors greater than 1.
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