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Abstract- We consider the problem of a group of users sharing a common com-
munication channel. The channel is slotted and the slot size corresponds to a packet
length. At the end of each slot, every user is informed whether the slot was idle,
contained a successful packet transmission, or experienced a collision of multiplicity
k, k > 2. Throughput is defined to be the expected fraction of slots with successful
transmissions. It has been shown, via a non-constructive proof, that a throughput
of one can be achieved. However, the best throughput achieved thus far is approxi-
mately 0.532. We will describe a collision resolution algorithm (CRA) which achieves,
in the limit, a throughput of one.
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1 Introduction

The problem of a group of users sharing a common channel has been widely inves-
tigated [8]. Much of the work assumes that, in the event of two or more packets
simultaneously transmitting on the channel, the only information available to the
users is that a collision has occured. It may be possible to determine the multiplicity
of the collision by means of an energy level detector [1-7]. This paper will show that
this additional information can be used to achieve a throughput approaching one in
the limit.

We will briefly describe the model next. The channel is slotted and the duration
of each slot corresponds to a packet length. Packet transmissions are timed to corre-
spond to slot durations on the channel. At the end of each slot, every user is informed
whether the slot was idle (contained no transmission), had a successful transmission
(contained one packet), or experienced a collision of multiplicity &, k& > 2 (contained
k packets). The packet arrivals from all the users is assumed to be Poisson with rate
A. Throughput is defined to be the expected fraction of slots with successful trans-
missions. A collision resolution algorithm (CRA) is used to control retransmissions
of colliding packets until they are successfully transmitted. The objective of a CRA
is to maximize the throughput of the channel while maintaining stability.

It has been shown by Pippenger [1], via a non-constructive proof, that a through-
put of one can be achieved. However, the best throughput achieved thus far has
achieved a throughput of approximately 0.532 [2]. This CRA used a nested scheme
to successfully transmit all packets in a group of colliding packets.

2 Description of the Collision Resolution Algo-
rithm

Consider two time axes, the packet arrival time axis and the slotted channel time
axis. The packet arrival time axis records the arrival of packets for transmissions
from all the users. An epoch will be defined as the total length of time, which in
general may consist of non-contiguous time intervals, as seen on the channel and
measured in channel slots, required to successfully transmit all packets that arrived
in an interval of length A on the arrival time axis.For this CRA we will choose A such
that AA = (N — 1)/2, where N is an integer, N > 2. Let us first consider how this
algorithm operates after a time interval (0,t), when all arrivals have been successfully
transmitted. Let the current time be CT. Then an epoch is the number of slots the
CRA requires to transmit successfully all arrivals in the interval (¢, min(t+ A, CT)).
In the next slot, (CT,CT +1) on the channel time axis, all the packets in the interval
(t,min(t + A, CT)) are transmitted or enabled. Intervals are enabled in first-come




first-served order, i.e. no interval of length A is enabled before intervals on the
arrival axis before it have not already been enabled. If the channel is idle or a
successful packet is transmitted as a result of there being none or exactly one packet
arrival in the interval (t, min(t+ A, CT')), respectively, we have successfully resolved
the interval and the epoch ends. Let the expected length of an epoch when an
interval of length A contains k packet arrivals be Ly, slots. Thus Ly = L; = 1. If
a collision of multiplicity k,k > N, occurs, then use a nested scheme, as described
in [2], to successfully retransmit all k colliding packets. If a collision of multiplicity
k,2 < k < N, occurs then set this interval aside and enable the next interval of length
A. Continue this process until we have set aside Fiy(m) such intervals. Here Fiy(m)
is an integer-valued function of N and m, as defined in [9]. Let us define a binary
“detecting” matrix Am, v [9], of size mx Fyy(m). Also, split each of the Fiy(m) intervals
into two sub-intervals, as described in [2], and denote the number of arrivals in the first
sub-interval of each by z;,1 <4 < Fi(m). Now each row of the binary matrix A, v
can be considered an enabling, where a one or zero is equivalent to including or leaving
out the first sub-interval of the corresponding interval from the set of sub-intervals
enabled. The feedback from a set of m enablings, which we will call a pass, can be
shown to be unique for every distinct set {z;,1 <4 < Fy(m),z; =0,1,2,..., N —1}.
Since Fy(m) > m for sufficiently large m, this leads to considerable savings in the
number of slots needed to determine the value the z;’s. Continue using a nested
procedure [2] on the two sub-intervals, until every interval of length A can be resolved
into sub-intervals which contain either one or no arrivals. After each pass, any sub-
intervals known to contain only one arrival may be enabled for successful transmission.
During this process, the original Fi(m) intervals will be subdivided into several
smaller sub-intervals. In each pass of the detecting matrix, we need Fiy(m) such
sub-intervals, each of which have between 2 and N — 1 arrivals. We shall assume
that sub-intervals are chosen for a pass in first-come first-served order. As these
sub-intervals are resolved, there will be a time when less than Fy(m) sub-intervals
will be available for a pass. At this time a new interval or intervals of length A will
be enabled until we can accumulate a total of Fy(m) intervals with £,2 < k < N,
arrivals in each one of them. Note that if any of the new intervals have k arrivals,
where £ = 0,1 or k¥ > N — 1, it will be resolved as before. Thus at any arbitrary
time, a new interval of length A is enabled only if either all earlier arrivals have been
successfully transmitted or if less than Fiy(m) unresolved sub-intervals are available
for a pass, which needs to be“filled out”.




3 Stability of the CRA

For the CRA to be stable, the expected epoch length L should be less than A, i.e.
L = E[Ly) < A.

As mentioned in the last section, Ly = L; = 1. Let us now consider L, 2/legk < N.
Excluding the initial enabling of an interval of length A and the & slots needed for
successful transmissions, the expected number of slots needed to resove a collision of
multiplicity k£ using the approach desribed in [2] can be bounded by 1.8784k, k > 2.
Excluding the initial enabling and successful transmissions, the number of passes
required to resolve an interval corresponds exactly to the number of slots required
in [2]. However, in this CRA, each such slot in [2] corresponds to m/Fy(m) slots
instead of one slot. This is due to the fact that the m slots required for a pass using
the detecting matrix gives us the same information as would have Fiy(m) slots using
the approach in [2] Therefore the corresponding expected number of slots needed can
be bounded by (m/Fn(m))1.8784k. Thus, after taking into consideration the initial
enabling and successful transmissions, Ly < 1+ (m/Fxy(m))1.8784k + k,N > k > 2.
For k > N, we may use the results from [2]. Thus Ly < 1+ 1.8784k,k > N.
Thus we can define LY, an upper bound to Ly, k£ > 0, as follows

L¥ =1+ (m/Fn(m))1.8784k + k, N > k > 0,

and
L¥ =1+1.8784k,k > N.

Also, recall that AA = (N — 1)/2. Therefore
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where we have applied Chebyshev’s inequality to bound the tail of a Poisson distri-
bution. We can also upper bound Fi(m) by using results from [9,10] as follows

et Jog(m + 1) — %l 1log4/3 —m
Fiv(m) > — logN2




where all logarithms are base 2. Therefore the throughput, Am,N, can be upper-
bounded as follows, by using the following sufficient condition for stability:

mlog N
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which gives us
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If we use very large, effectively infinite, size detecting matrices, then
) (N -1)/2
1.8784+ (N —1)/2

The expression on the right achieves a maximum of one when N (or, equivalently, A)
is infinite. Since r.h.s — 1 as N — oo, this CRA is stable as long as A < 1. We will
state this result as a theorem.
Theorem: The CRA described above for the random access channel with collisions
of known multiplicity can achieve a throughput arbitrarily close to one.

"This result can be extended to the Bernoulli model [1,6], where arrivals occur only
at discrete time instants with probability p, by using Bernoulli probabilities instead
of the Poisson distribution.

lim )\m, N <
m—0o0

4 Concluding Remarks

We have shown a CRA that achieves a throughput approaching unity for the random
access channel with collisions of known multiplicity. This is done at the cost of high
delays. Further results giving the throughputs and a lower bound on the delay for
the case when only finite and small collision multiplicities are detectable is reported
in [11]. The CRA used here made use of “detecting” matrices, the construction of
which was given by Lindstrém [9]. Note that the work in [1,7] used a different type
of detecting matrix, which has not yet been constructed. Also, since neither of these
matrices use the feedback information from each enabling, but only at the end of each
pass, it may be possible to construct CRA’s with lower delays than CRA’s using a
purely detecting matrix approach.
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Explanation of changes made in response to reviewer’s comments
The following are the two main changes that have been made to the paper:
(1) The operation of the collision resolution algorithm has been clarified.

The precise order in which intervals are enabled and processed by the detecting matrix was not
clear in the previous version. The new version makes clear that
(a) Sub-intervals generated in the nested search are processed by the detecting matrix in FCFS

order.
(b) New intervals are enabled in FCFS order and only when either previous intervals have all been
resolved or if new intervals are needed to accumulate Fy(m) intervals for the detecting matrix. This

ensures that the queue of unresolved intervals cannot grow without bound. Indeed, it can be

shown that the number of such intervals has a finite bound for finite N. Thus, even for values of A
that the system is unstable, the instability will lead a backlog of time intervals that are never
enabled, not of unresolved sub-intervals.

(ii) A proof of stability is included.

Using the standard argument of negative drift (e.g. see [2]), we use a sufficient condition for
stability to show that the CRA is stable, in the limit, for all arrival rates less than 1.

I'have continued to refer to Ly as an epoch length, since even though it does not give a direct
indication of delay as is the case in CRA’s which resolve one interval at a time, since it does
indicate the number of slots needed to resolve an interval with k arrivals, even if these slots, or
fractions of slots (when the detecting matrix is used) are spread out in time.




