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Abstract— An output-feedback Active Queue Management
(AQM) scheme is presented for asymptotically stabilizing a class
of TCP networks at a desired operating point. In order to
design an AQM controller with only an output (queue size)
measurement, a novel TCP window size observer is first proposed.
Then, the control law is developed by applying an observer-
based backstepping design technique. The amplitude limits on the
control input is addressed, namely, packet dropping or marking
ratio must fall between 0 and 1. An estimation of the domain of
attractiveness is given with a Lyapunov level set [3].

Index Terms— TCP, Congestion control, AQM, Persistent ex-
citation, Output feedback.

I. INTRODUCTION

Most previous efforts on studying Internet congestion con-
trol have the aim of analyzing the stability robustness of
existing AQM (Active Queue Management) algorithms. See
for example, [7][9][8] and a recent book [6]. The development
of improved AQM controllers, in contrast, has not received
enough attention, and the body of literature is relatively small.

Since the inefficiency of the prevalent AQMs (eg. Drop-
tail and RED) are already reported [8], we focus here on the
design of new AQM schemes (controllers operating on links)
via control theoretic approaches, while we do not change the
plant dynamics at the end-host side. A few relevant results
with our subject are as follows. A state feedback design
is proposed in [1] to stabilize the TCP/AQM closed loop
system. The controller uses both the window size and the
queue length measurements. An output feedback design is
more preferable as it requires only limited output information.
A static output feedback controller (“proportional marking”™)
and a “PI” controller is applied in [2]. The output feedback
LQ (Linear-Quadratic) AQM design in [4] is based on a linear
network model. All the above new AQM schemes are simple
linear designs. Analysis for the closed-loop control systems
basically involves linearization ideas and leads to local asymp-
totic stability. The authors of [8] investigate the interesting idea
of applying sliding mode control to stabilize TCP. However,
the control law is again developed via state feedback and
bears similar shortcomings as [1]. In summary, the constructive
congestion controller design via output feedback to stabilize
the nonlinear network model is still largely unexplored, even
for the case when network delays are omitted.

The focus of our attention is on developing output feedback
AQM controllers for the nonlinear TCP model. As opposed to
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the linear frequency domain methods used in most previous
work, we apply observer based backstepping design technique
and Lyapunov’s direct method [3] for theoretical analysis,
with the hope to enlarge the domain of stability. To this
end, we first study the observer design for estimating the
end-host TCP window size. The observer state (window size
estimation) is guaranteed to converge to the real state (true
window size) asymptotically, under the condition that the
control input is “persistently exciting” (PE) [3]. An asymptotic
stabilizer is then developed with the window size estimation
and the measured output queue length. One contribution of
our work is that we achieve the asymptotic stability for
the nonlinear TCP/AQM system via output (queue length)
feedback. Secondly, the saturation constraint is a challenging
issue in control systems. We address the constraint on the
control input: the packets dropping or marking ratio must fall
between 0 and 1. We also give an estimation for the domain
of stability.

The problems of observer design for nonlinear systems are
in general difficult. As the first step toward the control design
for a general network, we study the ideal network model (i.e.,
without delays and disturbances). We will show that our study
for the ideal network model also constitute a non-trivial case
study in nonlinear control.

II. DYNAMIC MODEL AND DESIGN OBJECTIVE

The results in this paper are based on the fluid model
proposed by Misra et al. [5]. The following dynamic equations
include both the dynamics of the bottleneck link buffer and
the dynamics of the window size, which are typical behaviors
of the TCP/AQM network.
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q € [0,¢maz),p € [0,1].

The bottleneck link queue length ¢ and the end host window
size W are taken as the state variables. p, the packet dropping
or marking ratio, is the control input. ¢ is the output of interest.
N, C and 7 represent the number of users (load factor), link
capacity and the round trip time. ¢4, denotes the maximum
buffer size. We assume N, C, 7 are known.

The control objective is to design a stabilizing feedback
control p for the plant (1)-(2) to achieve the convergence of W
to an operating point W* which fully utilizes the link capacity,
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and the convergence of ¢ to a desired length ¢*, when only
the buffer queue length ¢ is measured.

Equation (1) models the queue accumulation as the inte-
gration of the excess of the packets sending rate over the
link capacity. Equation (2) models the additive-increase and
multiplicative-decrease window size evolution in the conges-
tion avoidance phase of TCP. This model considers the situa-
tion of multiple homogeneous TCP sources, a single bottleneck
link and a delay free feedback. A detailed justification of this
model can be found in [5].

ITII. OUTPUT FEEDBACK AQM DESIGN
A. Observer design and estimation error convergence

First consider the following dynamic equation of an open
loop observer, where W is the observer state.

e 1 W242
W= -— ». 3)
T 2T
Define ¢ = W-W 4

as the error between the real and estimated window size.
Our work is based on the following two hypotheses regard-
ing the packet dropping signal p(t).
Hypothesis 1: There exist ty > 0 (possibly large) and some
Ty > 0,9 > 0 such that for Vi > tq, p satisfies:

1 t+To
= [ p(r)dr > ao. 5)
1o J;

Hypothesis 2: limsup,_, . p(t) < 1.

Remark 1: The above hypotheses are motivated by con-
sidering the physical characteristics of the network. In the
context of congestion control in TCP networks, the feedback
signal p represents packet dropping or marking probability.
We interpret this probability as the portion of packets that
are dropped or marked out of all received packets. The above
requirement (5) is known as “persistence of excitation” (PE)
requirement and is equivalent to that the overall marked or
dropped packets must reach a certain level over every period
of time of some length Tj in the long run, otherwise the link
buffer will not be cleared and congestion will occur due to
accumulated packets. Hypothesis 2 requires that for ¢ large
enough, the packet dropping probability is bounded away from
1. It means that dropping too many packets is undesirable
and should be avoided in the long run. We believe these two
hypotheses are not too restrictive.

The following lemma is useful for proving that the window
size estimation error converges exponentially.

Lemma 1: Suppose the time-varying input signal p(¢) be-
longs to [0, 1] and satisfies Hypotheses 1 and 2. If the initial
value satisfies W(O) > 0, the window size observer state W(t)
satisfies that W( ) > 0,Vt > 0 and liminf;_,o, W (t) > 0.

Proof: Consider the observer dynamics defined by (3).
The completeness of the solution of (3) can be established
by observing the differential equation and by applying the
Comparison Lemma [3]. Since W(0) > 0 and W(t) >

- W;T(t), we have W(t) > 0 for all ¢ > 0. Since Hypothesis

2 holds, for ¢ sufficiently large, p(t) < p for some p € (0, 1).
It holds:

Y 1—p W2t
W) > —2 - iﬁ.
T 2T
Consider that, the differential equation
_1-7 )
T 2T

has a stable equilibrium at 1/12—3 — 2 > 0. By recalling the

Comparison Lemma [3], it leads to that lim, ,__ W () > 0. ®
With the help of Hypothesis 1 and the fact that
liminf; oo W(t) > 0 (see Lemma 1), we can arrive at
the following proposition regarding the convergence of the
window size estimation error. The fact that W( ) > 0 for all
t > 0 is useful later in the control design.

Proposition 1: 1f the input p(t) € [0, 1] satisfies Hypothe-
ses 1 and 2 and if W (0) > 0, the window size estimation error
defined by (4) converges to 0 asymptotically.

Proof: From the definition of ¢ in (4), it is easy to see
from (2)-(3) that its dynamic equation is

. BN 1 ~ . 1 =
=W -W=_—W2-W?) p=——(W+W)- ¢
2T 2T

Consider the closed-form solution of the above equation:

L[t W(v V/I\/ v))-p(v)-dv

e(t) =¢e(to)e ™" fto ( W+ )) p(v)

where to > 0 is a large enough value. For all ¢ > o, we write
t —to = nTy + T for some n > 0, TO > T > 0. Substituting
this relation into the integration ft v)dv leads to

/t p(v)du:/t0+nT0+T p(v)dv

to to

to+T0o to+2T0
:/ p(v)dv + / p(v)dv ...

to to+To

to+nTo to+nTo+T
+/ p(u)dy-l-/ p(v)dv
to+(n—1)Ty t

o+nTh
to+nTo+T

>nagTh +/ p(v)dv

to+nTo
>naoTo,

where the last two inequalities hold because p satisfies the
PE condition (5) and is nonnegative. From the conclusion of
Lemma 1 and also the fact that the window size W (t) >
0,Vt > 0!, the following inequality holds V¢ > to for some
large enough to > 0.

W)+ W(t) > W(t) > ntminfﬁ?(t) > 0.
—00

Using the above inequality we have:

/ (W(v) + W(y))p(z/)dvzligiorgf W (t)naoTo

to

Zlitrginf W (t)ao(t — to — Tp).

ISince W (t) is the end host window size, it satisfies W (0) > 0. Using
the same proof as in Lemma 1, we can show that W (¢) > 0, V¢ > 0.
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Now combining the above derivation with the closed-form
solution of &(t), we know that for t > ¢y:

() < me(ty)e 11(t—t0)

im i v (4) 20To . e
where 1m = eliminfi_ oo W(t) =57 , 1 = %hmlnft—)oo W(t)
o, Ty are as defined in (5). [ |
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Fig. 1. Convergence of window size estimation error.

The simulation in Figure 1 shows that if p(¢) € [0,1] is a PE
signal (We set p(t) to a non-negative sine wave, which satisfies
(5)), the estimation error €(t) converges to 0 asymptotically.

B. Control design using output q and observer state W

With the window size estimation error £(¢) being an expo-
nentially converging to zero signal when ¢ is large enough, we
can consider the following model:

. JO ifquandN%—C’<0 ©)
= %(W+5)—C’ ,  otherwise ’
qE[Ovaax]
=1 W242
W=-— p . (7
T 27

In the above equations, variable ¢ and parameters N, 7,C
follow the same definitions as in (1)-(2). Equation (6) is
obtained from (1) by substituting W with W + ¢ using (4).
¢ represents the estimation error between the window size W
and the observer state .

Controller synthesis

In this part, we design a control input 12(\75) using the output
measurement ¢(¢) and the observer state W (t) to stabilize the
buffer queue length ¢(¢) at a desired value ¢* € (0, ¢maz).
where ¢* is a design freedom.

We apply the backstepping technique and Lyapunov’s direct
method to complete the design. For simplicity, the boundary
effect of (6) is omitted. We consider the system on [tg, o0)
where t( is a large enough value.

Step 1. We first consider the subsystem (6). The observer state
W is regarded as a virtual control input to stabilize ¢ at g*.

To this purpose, introduce z; := ¢ — ¢*. Consider the function

Vi = %z% Differentiating V7 to ¢ leads to
. N~ N 3N N
Vi== <—W + —c— C) < z129 — —k121 + —52
T T 4T Tk

where we have applied

—~ T TC

W = a(x)+ sz alz) = —kiz1 + N

N~ N N —~ N
Zo = ?W — ?a(zl) = —W + kl ?Zl -C (8)

contains the error between W and its desired form a(z1). In
the above derivation, ﬂzls < & ’”1 zl + N_22 by completing
the squares. kp is a constant des1gn parameter for tuning the
control gain.

Step 2. We then include the entire plant (6)-(7) and use the real
control p to asymptotically converge W to its desired form.

Notice that from (8)

N2 NC

N = N N
ZQZ—W'Fkl—Zl —U+k1—W+k1—€—k1—
T T T

where u := % _ w2 +2p is introduced for conveniences.
Consider the function V Vi+2 22, p > 0. Along solutions

of the control system, the derivative of V5 to t satisfies:

Vo=Vi + pzats

. 3N, , N ,
=a%z = - kizi + e €
N N? ~ N? NC
+p22< U+k’1_W+k1—€—le>

N2~

N N N
§—3—k12f+022 ( U+—+k1—W k1—0>
4t p T

N N2
+—e2 4 klp—2225
T

Tk1
3N N pkg pNE2
<——k —e* — pkozs + —
1zl+k£ P 2—!—2 +2k7_4€
3N pka pN4k2
<——kyzf — —
el e Rl e
N pN4kf 9
—2 V:
S z+< T €%,
where by completing the squares, klpf—;zza <
47,2
”’2”2 22 + ’;]ZQT]”J g2 The nominal control =
%( 7__]ng kozo + k1 XE ) is applied in the

third step. k1 > 0, k’2 > 0 are constants for tuning the control
gain. 7y = mm{ SN k1, pky }. Note that the window size
estimation error £(t) < me(tp)e~7(¢=%), By the Comparison
Lemma [3],

Va(t) < Vz(to)e_'m(t_t(’) < [6_271“_)&0)

_ e—'rz(t—to)]
Y2 —2m

’

N*kT .
A ’;k—zfj—) m?2e%(to). The above analysis

shows that the control scheme is asymptotically stabilizing.

where ¢ =
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Suppose that (o) satisfies

(@maz — q*)2
2 )

_2n a2
1 <271 ) ¥2—271 (271 > Y2-271
Yo — 21 Vo Vo .

It follows, an estimation for the domain of stability is

)2
Q.= {V(thz) < WTQ) - Cg(’Yla’V2)}7

and ¢(t) < @maz, Yt > to. The actual control law is obtained
from wu, as

c-g(m,72) < )

g(m,72) =

2T (1
W2 42
Due to the saturation constraints on p, the parameters ky, ko
and p need to be carefully designed.

Main result

In view of the above design process, we state the following
theorem as our main result.

Theorem 1: Consider the plant model consisting of (1) and
(2), which represent the window size and the bottleneck link
buffer queue length dynamics. Apply the control law (10) and
set the initial value T/ (0) > 0 for the observer state. Suppose
that k1, ko and p are chosen such that

p:

T N —~ T
— — — .
- klc+szl+leW+k2N22) (10)

T " TC' T
Y3 max < ~ 5
<k1k2+ pN) (¢ q") L k1C+ k2 N 2

7C  1¢" |
—_— 4+ = < - 12
k10+k2N+Np+k1k2q <z (12)
The trajectories of the closed-loop system converge to

{g*, W* %} asymptotically.

Proof: Note that the form of the control law has been
developed (see (10)) using Lyapunov’s direct method. We now
show that given the stated conditions, the control law satisfies
the saturation constraints (namely, the parameters in (11) and
(12) guarantee p(t) € [0,1] for all ¢ € [0, gmaz] and for all W)
and is indeed stabilizing. We first show that p is nonnegative,

then show it is upper bounded by 1.
Substitute the definition of z; and 2z, into (10), it holds:

1 T N —~ T

; —k1C + N—pzl + /ﬁ?W(t) +k2NZ2(t) =

1 C * N N —
S ki C =k T = TL  ykag” + kkag + (kl— +k:2)W.
T N Np T

mo(t)

According to the dynamic equation of ¢ in (6), it satisfies
q(t) > 0 for V¢ > 0. From Lemma | we know that W (¢) > 0.
In the above equation 72 (¢) > 0. By (12), m; > 0. According
to the definition of p in (10) and the above analysis for 7y, 73,
we know that p(t) > 0, V¢ > 0.

On the other hand, from (11), the following inequality holds:

T

. c o1~ N .
(k1k2+ L) (a(t) = ") < k1C 4 ke — + —W? — (k1—+k2)W
pN N 2T T

by completing the squares. Applying the above inequality, we
can verify

1

—,
W 2
- —kC we+2
-

< b
2T

T N —~ T
— ki —W 4+ ky—
+pNZ1+ 17_ + 2N22

N 2
(/ﬂ? + k)" (11)

which implies that p(t) < 1 by the definition of p (see (10)).
According to Hypotheses 1 and 2, p(t) satisfies (5) and
limsup, ,., p(t) < 1. Thus p(¢) satisfies the conditions
required by Proposition 1. It follows that the window size
estimation error defined by (4) converges to zero exponentially.
The rest of the proof is clear from the controller synthesis.
Suppose that (9) holds, an estimation for the domain of
attraction is given by Q.. [ |
The following simulation demonstrate that using the con-
troller we designed, the closed-loop system trajectories con-
verge to the desired equilibrium asymptotically. The link
buffer queue length converges asymptotically to ¢* = 5. The
simulation parameters are as follow:
N= 5, 7 = 0.01sec, C = 5000packets/sec
Gmaz = 30packets, packets length= 1000bytes,
segment size = 1000bytes, ¢* = 5packets.

30 T T
.
10 B
0 . ‘ ‘ ‘ t

0 2 4 6 8 10
10F

v

: : ‘ ‘ t

0 2 4 6 8 10
| — window size estimation

8 1 1 L L t
0 2 4 6 8 10
0.2 . T ‘ :
0.1 |
Oﬁmmm , \ ‘ ‘ t
0 2 4 6 8 10
Fig. 2. Closed loop system response.
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