
Modeling and Anallysis of An Expiration-Based
Hierarchical Caching System

Y. Thomas Hou * Jianping Pan t Bo Li t Xueyan Tang t Shivendra Panwar 8

* Virginia Tech, The Bradley Department O F Electrical and Computer Engineering, Blacksburg, VA, USA
t University of Waterloo, Waterloo, Ontario, Canada

Hong Kong University of Science and Technology, Kowloon, Hong Kong
Polytechnic University, Brooklyn, NY, USA

Absmcr- Caching is an important m- to wale up the invalidation [5]) is that they often involve higher overhead and
growth of the lotemet. Weak consistency is a mdor approach complexity and are expensive to deploy. Nevertheless, strong
used in caching and has in forms. consistency is an indispensable approach to deliver mission
This paper investigates some properties and performance issues
of an apirstion-hased system. we on a critical contents on the Web. On the other hand. under weak
& system h& on the %e-~o.fiw (m) =piration consistency, it is allowed to let a user get a somewhat stale ob-
mechanism and present a basic model for such U system. By an. ject from the cache server. The cache server only validates the
dyzing the intrinsic T1z timing behavior in the basic model, we object’s freshness with the origin server periodically and may
derive the I p e r s p lag behind the actual update at the origin server. Weak consis-

tency is particularly useful for those web contents that can tol- tive ofthe caching system and end users, respectively. Our results
oller some basic understanding of a hierarchical caching system
based on the weak consistency paradigm erate a certain degree of discrepancy between cached content

and the content at origin server as long as it is understood that
such discrepancy in time does not cause any harm. It is impor-
tant to keep such discrepancy not to exceed a reasonable pe-
nod of time. Example applications using weak consistency in-
clude online newspapers and magazines; personal homepages,
and the majority of web sites - although the original content
may be further updated at the origin server, it is still useful (or
at least not harmful) to retrieve the cached copy at a cache or
proxy server.’ It has been shown that weak cache consistency
is a viable and economic approach to deliver content that does
not have a strict freshness requirement [SI.

To suppott weak consistency, the concept of lime-To-Live
(TIL) is introduced. l T L is an a priori estimate of an object’s
remaining life time and can be used to determine how long a
cached object remains useful. Under the ?TL approach, each
object is initialized with a TTL value, after which it is sup-
posed to decrease’with time. An object that has been cached
longer than its initial TIL is said to expire and the next re-
quest for this object will cause the object to be requested (or
validated) from the origin server or some cache server that has
a copy with an unexpired ‘Ill. In practice, the lTL-based
strategy is easy to implement (e.g., by using the “Expires” or
“Last-Modified“ fields in H n p header [7]).

There are many altemative approaches to construct a
caching infrastructure. Howeverjt has been shown (21 that a
hierarchically organized caching infrastructure is particularly
effective to scale up Web growth since the Internet topology
also tends to be organized hierarchically. In light of this, in

fmm the origin

important petfomancemetrics

1. INTRODUCTION
As Van Jacobson once put it several years ago, “With 25

years of Internet experience, we’ve learned exactly one way
to deal with exponential growth: caching” [6]. This statement
undoubtedly indicates the significance of caching as a primary
means to scale up the Internet. There are significant advan-
rages of deploying cache systems over the Internet 171: (I)
for end users, a nearby cache semer can often satisfy :requests
faster than a faraway origin server; @).for network providers,
the cache servers can reduce the amount of traffic liver the
network and (3) for service providers, the cache sewers can
distribute the load that the origin servers have to haridle and
increases reliability in offering Internet services.

An important issue in the design of a caching syst-m is to
maintain some level of consistency between cached copies of
an object and the object maintained at the origin server. Every
time the original object is updated at the origin server. copies
of that object cached elsewhere becomes stale. Caching con-
sistency mechanisms ensure that cached copies of an object
are eventually updated to reflect changes to the original ob-
ject. Depending on how soon the cached copies are lipdated.
cache consistency mechanisms fall into two major calegones:
srmng consislency and weak consistency.

Under strong consistency. upon an update of an Object at
the origin server, the origin server immediately notifies all
cache servers about this update. Example caching app’lications
that require strong consistency include time-sensitive content
delivery (e.g.. emergency public announcements). The main
problem associated with strong consistency mechanisms (e.g.,

’A dways has the option to rclond the fEsh
server if hdshc prefers lo have the most updated copy of lhc obien.

0-7803-7632-3/02/$17.00 Q2002 IEEE 2468

this paper, we consider a hierarchical caching system. We
conduct an investigation of its performance and behavior un-
der the weak consistency paradigm, which employs the ‘ITL-
based expiration mechanism. Although the current HTTP pro-
tocols on Web caching provide a lot of similar features [4], we
intend to conduct our investigation of weak consistency in a
more general sening and will not limit ourselves to the details
of the HTTP implementation.

We start with a basic model, which is a generic hierarchi-
cal caching system based on tree topology. Under the ba-
sic model, the root node represents the origin server whereas
all the other nodes in the tree represent cache servers (see
Fig. I) . We assume each node (or cache server) is deployed
in a metropolitan region and the user requests’ within this par-
ticular metro region always goes to this regional cache server
for content service. When the object is not available or its Tn
has expired at a cache server. the cache server will query its
immediate parent cache server, which may further query its
immediate parent cache server and so forth, until a “fresh”
copy of the object is retrieved or the origin root server is
reached. Here, a “fresh” copy is defined to he a copy of the
object with an unexpired TTL (i.e., positive ‘ITL). The origin
root server always maintains an updated copy of the object
and will initialize the Tn of an object upon request. The
Tn value for an object at any cache server (except the ori-
gin) decreases with time. Since ‘ITL is a fundamental param-
eter that determines the intrinsic behavior of the overall hier-
archical caching system, we analyze the behavior of ‘ITL for
a cache server at each level of the tree. Based on this analysis,
we conduct a performance smdy for the hierarchical caching
system from the perspectives of both the caching system and
end users by deriving performance mehics such as hit rate,
miss rate, response time, and network load.

The remainder of this paper is organized as follows. In Sec-
tion 11, we present the basic model forthe hierarchical caching
system based on weak consistency. In Section 111, we analyze
the ln. behavior of the basic model and derive its perfor-
mance metrics. Section IV discusses related work and Sec-
tion V concludes this paper.

11. THE BASIC MODEL
In a lTL-based caching system, each cached object is as-

sociated with a l T L value, which was first initialized by
the cache server or origin server where the object was re-
trieved. The ‘ITL value decreases with time and expires when
it reaches 0. A cached object is considered fresh when its ’ITL
is greater than zero; Otherwise, it is considered stale.

We assume the hierarchical caching system follow a tree
structure (see Fig. 1). Typically, any cache server (including
the origin server) is deployed within a metro region. At level

2Note that a user may also have a brow& cache built on its host and here
the user request refen to the request sent to the proxy cache sewer by the user
after a miss af its own browser cache. That is, we only consider the “effective”
request sent to Le pmxy cache semi fmm Le user and not consider those
q u e s t that cm k served by Le user’s own browser cache.

I

Fig. 1. An example of a hierarchical caching system based on Uee topology.

0, we have one origin (root) server3, So, which always main-
tain the latest (updated) copy of an object. The mot server is
logically connected to some child servers which we refer to as
level 1 cache servers, each of which are geographically located
in different metro regions. Level 1 cache server may also con-
nect to some child servers which we call level 2 cache servers,
and so forth. Finally, a cache server that does not have any
child cache server is called a leaf cache server. The maximum
number of levels of a hierarchical tree is also called the height
of the tree. Figure 1 shows a simple example of our caching
system based on a tree StrucNre with height of 3.

We assume that the aggregate user requests to the cache
server within a metro region follow a Poisson proce~s .~ When
a user request arrives at the cache server, if the object already
exists at the cache server and its ‘ITL is still greater than 0, the
cache server will deliver the object to the user. We consider
such an event a user hit. On the other hand, when the user
request arrives at the local cache server, if the object does not
exist or the ‘ITL timer has expired (i.e., decreased to 0). we
consider such an event a user miss. When a m i s s happens, the
local cache server will generate a request and query its imme-
diate parent cache server to see if it has the object with a valid
‘ITL. If this parent cache server does have this object with an
unexpired ‘ITL, we call this event a system hit since the re-
quest is generated by a child cache server rather than directly
from a user. Upon a system hit, the object will be delivered
to the cache server and will subsequently be delivered to the
user. Otherwise, we have a system miss and the parent cache
server will generate a request and further query its own parent
cache server and so forth, until the query process (in the Worst
case) reaches the origin root serverin which case we assume
that the origin root server always maintains an updated fresh
copy of the object. The origin root server will deliver the ob-
ject with a Tn field initialized to maximum lifetime T, where
r > 0, and the l T L value decreases linearly as time goes on.
Thus, the maximum age that an object (delivered to a user) can
have under such hierarchical caching system is bounded by r.
Under the basic model, upon the event of a system hit, not only
the user will be delivered a copy of the object with an updated
‘ITL, all the cache servers involved in the query process will
also get a copy of this object with an updated Tn.

3N0te that Le mot semer may Consist of a cluster of sswm. But we assume
that geographically they all lacare 81 the same site (~ 8 . . an ISP’s data center).

‘An exact t r a c model for individual user is still an open -arch topic.
However. it is reasonable to assums that. for a large papulation in a mefm
region. the aggregate q u e s ~ follow B Poisson m e s s .

2469

Note that we distinguish hit rate and miss rate from user and
cache system perspectives. Such distinction will help U:: better
understand the details of the system behavior, as we shzdl soon
find out. To maintain such distinction, at a cache server, we
need to distinguish user requests and system request;: user
requests come from the metro region within the coverage of
this local cache server while system requests come from its
child (including grandchild and so forth) cache servers. which
are caused by users from a remote metro region.

111. PERFORMANCE ANALYSIS

In this section, we investigate the performance of the basic
model. We conduct performance evaluation along two dimen-
sions: caching system performance and end user quality of
experience. By caching system's performance, we refer to the
behavior and properties of the hierarchical caching SUucNre,
such as the aggregated behavior of TTL, m i s s rate, hit rate,
average response time, and traffic load at each cache ;server?
On the other hand, user's quality of experience refers to user's
perceived quality in content delivery, e.g., hit rate, miss rate,
average response time, which only counts requests fr3m end
users and does not include auxiliary traffic within the hierar-
chical caching system.

A. Average lTL Behavior
We start our analysis with the most general form of a

caching system. Suppose we are at a cache server (of level
h, 1 5 h 5 H , where H is the height of the tree. De-
note the (remaining) l T L at the cache server as T h (t :) . Then
r h (t) is a renewal process [El, with the renewal point starting
at time t = t . when T h (t) just decreases to 0,i. e., T h (t .) = 0
and Th(t;) > 0 (see Fig. 2). It should he clear that when
rh.(t) = 0, then for all h' 5 h 5 H , r h (t) = 0. This is
because that under our basic model, an object maintained at a
parent cache server always has its remaining "L larger than
or equal to the remaining 'ITL of the same object mahtained
at its child cache servers.

Refemng to Fig. 2, denote the peak value of rh(t:i during
each renewal period as T h . 1 5 h 5 H . Then we have 2'1 = r
and T h is a random variable defined over (0, r] for 2 5 h 5
H . We are interested in the average value of T h , for 2 5
h 5 H, denoted as E (T h) , which is a fundamental system
parameter in our performance study for the basic model.

Due to the nature of the hierarchical tree and TTL-based ex-
piration, there is an important property on TTL that links the

5By oggregalcd, we mean both e x m d user requests as well is inlemal
q u e s t s from child caehe sewers.

- :

2, A-

'b-

Fig. 3.
reference to the TTL behavior al level 1.

A sample path of Le 1TL behavior of a cache SNCT at level h in

cache sewers at all levels. In particular, any Tn. renewal point
at level h, 2 5 h S H (see Fig. 2) coincides (orsynchmnizes)
with some renewal point at level 1. However, the converse is
not true, i.e., a renewal point at level 1 may not be a renewal
point at level h, 2 5 h 5 H. This is because that the smaller
the h for a cache server, the more child servers (and thus user
population) it will support, which translates into smaller idle
period (the time period when r h (t) remains 0). This observa-
tion leads to the fact that the average renewal period at level
h, 2 5 h 5 H , is larger than the average renewal period at
level 1. To be more precise, the average renewal period at
each level increases with h, with the smallest at level 1 and
largest at level H .

Referring to Fig. 3, for each renewal period at level 1, it is
clear that the first request that initiates the 'ITL triangle within
the renewal period follows a Poisson process with rate AI,
which is the sum of all Poisson arrival rates at all cache SeNerS
of the tree with SI being its root. This Poisson process (with
rate)A1 can be considered as an aggregate of two Poisson
processes: the first with a rate of A h representing the arrivals at
the sub-tree with S h as the root and the second (with a rate of
AI - Ah) representing arrivals from the rest of the tree within
SI excluding the sub-tree s h . Clearly, the probability that the
?TL hiangle is initiated by a request from the sub-tree with
rooti& A h / l \ l and the probability that the TTL is initiated
byarequestfromtherestoftree(i.e.. &\&)is (A I - A ~) / A I .

We now look at the time interval at level h that corresponds
to the same renewal period at level 1. There are three cases,
and the sum of probabilities of these three cases is 1.

Case I: With probability A h / A l . the ?TL hiangle at level
1 is initiated by a request from the sub-tree with root at S,. In
this case, T h = r.

Case 2: With probability + ..\; Ahe-"h'd t = *.- --.
(1 - e-hhr), there is a request arrival within T from the sub-
tree with root &. The average T h in this case is given by

It can be shown that the average T h in this case (i.e., the right
side of (1)) is always greater than r/2. This can he intuitively
explained by the Poisson property of the arrival process.

2470

Case 3: With probability of . J," Ahe-A"Ldt =
. e - A h r , there is no request arrival within T in this in-

To calculate E (T h) , all we need to do is to take the proba-

cache server. We have,

} .(3)

1 1 r; = "[
A h 1 [Ah . E (T h) + E (M h)]

+Ah { 1 + (A h . E (T h) + E (M h) - 11

terval. In this case, there is no l T L triangle in this interval.

bilistically weighted average of T h under cases I and 2, i.e., A h - A h 1

. - f + f c - ^ h ' 2 .T + ' (1 - e-AhT) .

9 + &L=!SA . (1 -e-&')
Note that for a constant Ah and e h at each level h, the miss

rate increases as the level h increases. . E (T h) =
A , The system's hit rate, Q; = 1 - r;, is then

A h T + (A1 - A h) (T - & +
1) . (2) e;, ~ X, { Ah ' E (T h) + E (M h)

A h

- -
Ah + (A1 - A h) (l -

1 + Ah ' E (T h) + E (M h)

Pmpeny I: Under the basic model, the average of T h at +-{ A h . E (T h) + [E (M h) - l]] .(4)

Denote d h as the round trip time (including processing de-
lay at the cache server) between a child cache server at level
hand its immediate.parent cache server, and assume the delay
between an end user and its local cache server is negligible.
The average system response time, U;. is therefore

level h, h = 1,2, . . . , H , has the followingproperties: (1) r 2
E (T h) > T / Z and (2) E(Ti) > E (T 2) > ... > E (T h) >
... > E(T").
We omit the proof here due to paper length limit.

The average value of T h . i.e., E (T h) is a fundamental SYS-

tem parameter characterizing the behavior of the hierarchical
caching system. In the following, we calculate performance
parameters such as hit rate, miss rate, response time, from

formance parameters hinge upon the value of E(Th).

1 + Ah . E (T h) + [E(&) - 11

both the system and the users' perspectives. All of these per- U i = s ; . o + r ; ' 1 T h , (5)

where T,, is delay until getting a fresh object given that there
is a miss at the local cache server. From (5). we have

(6)
B. Performance Mefrics U4

r;
"h =

As mentioned earlier, we distinguish performance metrics
along two dimensions: system performance and user per-
ceived performance. Denote r;, 0;. and U; as the system
miss rate, hit rate, and response time at a cache server of level
h, respectively. The system m i s s rate, hit rate, and response
time take into account of all requests, both from the users in
the (local) metro region and from child cache servers (intemal
dynamics within the hierarchical caching tree). Similarly, de-
note r;. e;, and U; as the user perceived miss rate, hit rate,
and response time at a cache server of level h, respectively.
The user perceived performance parameters consider only re-
quests generated by the users in the local metro region and do
not consider those requests forwarded from any child cache
servers.

Before we calculate the miss rate rl, at level h, we make
the following observation: each cache server can make at most
one request to its parent cache server during any renewal cy-
cle. Denote M h the number of request a cache server at level
h receives from its child cache servers during a renewal cycle
and eh the number of child cache servers of this server at level
h. Then M h is a random variable defined over 0,1, . . . , e h and
the probability distribution of M h i s a combinatorial of expo-
nential distributions - due to the'fact that the user requests
at a cache server of any level follows a Poisson distribution.
Therefore, E (M h) can be easily calculated explicitly using
combinatorics and E (M h) 5 c h .

On the Other hand

1Th = d h + - O + - .Th-1 . (7)

Combining (5). (6) and (7). we have the following recursive
relationship for 0;.

U; = r i . (d h + A . x h - l) = r ; . (d h +

A h - i A h 1 A h - i - A h

A h - 1

4 - d ,
(8)

witho;=r ; .d l .
We now calculate the user perceived hit rate (e;), miss

rate (F;), and response time (U;), at a cache server of level
h. These performance metrics will be slightly different from
those corresponding to the system performance. This is be-
cause we need to filter out the effect of the requests from child
cache servers (which represent intemal dynamics of the hier-
archical caching system). Again, by conditioning on whether
the first request comes from local users or child cache servers,
we have,

A Ah
A h - 1 A h - l r t - 1

s;: = & { A h ' E (T h)] + A h - A h 1 . (9)

= 1 - e;, we have, for the users' miss rate,

Ah 1 + A h . E(Th) A h

As
To calculate the miss rate.r;,we, condition on whether the

first miss (i.e., the request that initiates the TTL triangle) is
from a user of the cache server's metro region or from a child

2471

The response time a user experiences is

with U; = ry. dl

C. Network Trafic Load
So far we have calculated the hit rate, miss rate, and re-

sponse time from both the system’s and user’s perspxtives.
There is one more important system performance metric that
we want to include. This is the traffic load associated with the
hierarchical caching system. As we discussed earlier, one of
the major benefits of a caching system is to reduce the overall
network traffic load and thus to achieve scalabilify as the In-
ternet continues to grow. Here, we calculate the network load
associated with the hierarchical caching system. Based on this
result, it can be shown that the hierarchical caching system has
superior scalability property comparing to a non-hierarchical
(or “flat”) caching system.

One way to measure networktraffic load for the hierarchical
caching system is to perform an accounting on how much traf-
fic each cache server generates to its immediate parerit cache
server. Note that a cache server will initiate a request ta its par-
ent cache server only when a request (either from local users
in the metro region or from child cache servers) incurs a miss.
Denote the average request rate that a cache server SI, at level
h sends to its parent cache server as p i . By definition, we have

where Ih is the idle period during a renewal cycle for a cache
server at level hand E(1h) = l /Ah.

IV. RELATED WORK

There are some prior research efforts on Web caching based
on weak consistency. For example, in [I], [SI, the authors
demonstrate the efficacy of Web caching under weak consis-
tency by using timer-based protocols. Chbkhunthod ei al.
[2] demonstrate that a caching system using the hierarchical
architecture can be very effective to scale up the Web growth.
In [9], Yu et 01. show a scalable invalidation approach based
on hierarchy and application-level multicast routing. How-
ever, none of these prior efforts investigate the l T L expiration-
based weak consistency problem for a hierarchical caching
system in a formal setting as we have done in this paper.

The most relevant work to ours is that by Cohen ,and Ka-
plan [3], where the authors focus on the effects of age on the
miss rate of the cache. Among other things, the authors in
131 consider a simple tree with a height of 2 and compare its
miss rate with other configurations under different request ar-
rival pattems. Motivated by the work in [31, this paper aims
to have a deeper understanding of a expiration-based hierar-
chical caching system with formal theoretical underpinning.

By casting such hierarchical caching system with a simple but
generic model, we are able to obtain better understanding of
the time domain behavior of weak consistency and a compre-
hensive set of performance memcs from both system‘sand
user’s perspectives.

V. CONCLUSIONS

Caching is an important means to scale up the Internet
growth and weak consistency is amajor approach used in
Web caching. This paper presents a fundamental study of a
hierarchical caching system based on the weak consistency
paradigm, which builds upon the concept of TTL expiration.
Although the current HTI” implementations of Web caching
provide a lot of similar features, our investigation in the weak
consistency paradigm is canied out in a general setting and
is not limited to any’details of the current HTI” implemen-
tations. The main contribution of this paper is to offer some
fundamental understanding on weak consistency based hier-
archical caching systems. Based on a basic model for a hier-
archical caching system using the concept of l T L expiration
mechanism to achieve weak consistency, we analyze the in-
trinsic timing behavior of such a system and derive important
performance metrics from both the system’s and user’s per-
spectives. Our results are general and can be applied to other
cache systems employing expiration-based consistency.

We have done extensive simulation work to further demon-
strate the efficacy of our analysis and reveal insights on vari-
ous trade-off between performance and cost. Due to the page
limit, we will leave these simulation results in a future paper.

REFERENCES
[I] V. Cate. “Alex-A global file system:’ in Pmc. I992 USENIX

File System Wor!&op, pp. 1-12. Ann &bar, MI, May 1992.
[Z] A. Chankhunthcd, P. Danzig, C. Neerdaels, M.F. Schwarlz, and

K.J. Worrell, “A hierarchical Intcmet object cache,” in Pmc.
USENIX 19% Technical Conference, pp. IF-163, San Diego,
CA, Jan. 19%.

[3] E. Cohen and H. Kaplan, “Aging through cascaded caches: per-
formance issues in the distribution of Web conten{” in Pmc.
ACM SIGCOMM Confemnce, pp. 41-53, San Diego. CA, Au-

[4] A. Dingle. “Cache consistency in the H T l T 1.1 pro-
posed standard,,’ . in Proc. ICM Worhhop on Web
Caching, Warsaw, Poland, Sept. 19%. Available at
http://w3cache.icm.edu.pl/workshop/progr~m.ht~l.

(51 I. Gwertzman and M. Seltzer, “World-Wide Web cache consis-
tency:’ in Pmc. 19% USENIXTechnical Confe-me, pp. 141-
151. San Diego, CA, Ian. 19%.

161 V. Jacobson, “How to kill the Intemet:’ A presentation at
ACM SIGCOMM95 Middleware Worhhop, Cambridge, MA,
Aug. 28, 1995. Availableat http://www.root.org/ip-
development/.

[7] M. Rabinovich and 0. Spatscheck. Web Caching and Replica-
tion, Addison-Wesley, 2Mn.

[SI S.M. Ross. Introduction to Pmbabiliry Modeis, Fourth Edition,
(Chapter 7). Academic Press, Inc., 1989.

[9] H. Yu. L. Breslau, and S. Shenker, “A scalable Web cache con-
sistcncy architecture.’’ in Pmc. ACM SIGCOMM Conference,
Cambridge, MA, Aug. 3lSept. 3, 1999.

gust 2001.

2472

http://www.root.org/ip

