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ABSTRACT 

We present a scheme for flow control based on the 
Golden Ratio Policy of Itai and Rosberg [ 5 ]  that requires 
very few buffers and guarantees low end to end delays. 
Messages are formed into equal length packets and then 
transmitted in accordance with a cyclic schedule. The scheme 
is very well suited to an Asynchronous Time Division Mul- 
tiplexing (ATM) environment as it allows the networks ca- 
pacity to be allotted to sessions in any desired proportion. 
The implementation is quite simple. 

I. INTRODUCTION 

Consider a network of computers (or nodes) intercon- 
nected by transmission links (or edges) communicating with 
each other via a store and forward mechanism. The virtual 
circuit that is set up between two communicating processes 
in distinct computers is called a session. Each link may carry 
traffic from hundreds of sessions, and these sessions must 
be given their fair share of the network's capacity. The task 
of controlling the entry and forwarding of messages in such 
a network is referred to as flow control. 

The primary objective of a flow control policy is to en- 
sure that the various sessions get a fair share of the networks 
capacity (under some appropriate measure of fairness). Im- 
plementational considerations lead us to conclude that the 
following properties are also desirable: 

1. Low buffer requirements. 

2. 

3. 

4. 

Low end to end delays. 

The ability to operate in a decentralized manner. 

The ability to take down and bring up sessions in a 
simple manner. 

5 .  Stability in heavy traffic. 

Sewlon 4 

v 
x,- %- x3- .333, ~ 4 -  .667 

All link8 are omumed to have a capoclty of 1 unit 

Figure 1. A 3 node network with 4 sessions. 

In this paper we present a scheme to allocate available 
capacity to sessions in any desired proportion. A three node 
network with four sessions is shown in figure 1 along with 
the max-min fair rates [3] for each of the sessions. 

Hahne [2] showed that if sessions were allowed to 
transmit in a round robin fashion and the window size (or 
the maximum number of transmitted messages for which 
acknowledgements have not been received) were sufficiently 
large, the max-min fair rates would automatically be en- 
forced. This policy is completely distributed, and requires no 
inter processor communication. Unfortunately, the necessary 
window size (and consequently the number of buffers re- 
quired for each session) is astronomically large. When the 
window size was restricted, max-min fairness was not always 
achieved, though the throughput of a session was lower 
bounded. 

Another approach, adopted by Mukherji [7], is to have 
a transmission schedule that is cyclic. Each session is allotted 
at least one slot during each transmission cycle (or frame) 
and this lower bounds its throughput. This is well suited to 
applications such as digitized speech that require synchronous 
access to the network. A session may use more than one 
slot in every cycle, and uncommitted slots are allocated to 
sessions according to their instantaneous requirements. In 
addition, Mukherji provides upper bounds on the delays ex- 
perienced by packets, and describes efficient algorithms for 
the construction of near optimal transmission schedules. 
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The policy we shall describe is cyclic too, and is designed 
so that transmission permits to the various sessions are fairly 
evenly spaced. This will be shown to lead to small buffer 
requirements, low end-to-end delays, and to allow sessions 
to be added and taken down simply. Session are allotted slots 
in accordance with their requirements, and consequently, this 
policy is well suited to an Asynchronous Time Division 
Multiplexing (ATM) environment. 

The remainder of the paper is organized as follows. In 
Section 2, the Golden Ratio Policy is described. Section 3 
is devoted to an exploration of its properties. The policy's 
performance is examined in section 4, and design consider- 
ations are the subject of section 5. Finally, in section 6, 
conclusions are drawn and some open problems are identi- 
fied. 

11. THE GOLDEN RATIO POLICY 

Suppose we have S sessions on a given link labeled 
1,2, . . . , S, with capacity requirements x,,~,, .. . , x,. Clearly 
x, 2 0, 1 5 I 5 S, and we shall require x1 + ... + x, = 1 .  
Normalizing the link capacity to 1 unit causes no loss of 
generality. If a link has some spare capacity, this can be 
allocated to a dummy session in whose slots nothing is 
transmitted. Fix e 2 0. ( E determines how accurately we 
wish the capacity requirements to be approximated.) Choose 
a frame (or cycle) length N sufficiently large so that 
max(x,N - LX,NJ , rx,M - x,N) 5 NE , 1 5 1 5  S. Then 
define X, = LX,NJ or rx,M subject to X ,  + ... + X,  = N .  Let 
+ - I  A (6 -1)/2. + is also known as the Golden Ratio, and 
is related to the Fibonacci numbers via 

Mark the points +-' mod 1,  2$I-I mod 1 ,  ... , 
N@-l mod 1 on a circle of circumference 1,  dividing it into 
N intervals. Allot to session 1 the slots starting at 
+-I  mod 1 ,  2+-l mod 1 ,  ... , mod 1 ,  to session 2 
those starting at (X, +l)+-I mod 1,  ... , (XI +X,)+-l mod 
1 ,  and so on till all the slots have been allotted. Lastly, 
equalize the slot lengths. In effect, we have chosen a suffi- 
ciently long frame length, and then allotted slots within the 
frame in a reasonably regular manner. 

A 

Consider the following example: S = 4, x, = .3, 3 = .3,  
x, = .2, x, = .2, E = . l .  The network is assumed to have two 
nodes, say 1 and 2, and an edge joining them. All the ses- 

sions are assumed to start at node 1 and end at node 2. 
These requirements can be satisfied when N = 5 ,  leading to 
XI = 2, X, = X, = X, = 1 .  The transmission sequence is 
4 1 3 1 2 ... , as can be verified by direct computation. 

We shall assume all the clocks in the network to run at 
an identical rate, implying the length of a transmission cycle 
to be the same at every node. They may, however, have 
fixed offsets relative to each other, making the transmission 
schedule at one node a time shifted version of that at an- 
other. Similarly, when sessions originating at distinct nodes 
share a link, the transmissions schedules of some sessions 
may be unavoidably offset from their transmission schedules 
on the preceding link even in the absence of clock skews. 
This necessitates the buffering of messages, as a message 
that arrives at a node may have to wait for some time before 
it can be forwarded. 

Looking at the transmission sequence, the reason for the 
use of the Golden Ratio becomes clear. Not only are suc- 
cessive permissions to the sessions evenly spaced, but com- 
puting the transmission sequence is simple, enabling sessions 
to added or deleted without difficulty. The ability of the 
Golden Ratio policy to space successive permissions to 
transmit quite evenly has been explored in great detail 
[ l l ,  121, and has found use in multiplicative hashing [SI 
and the design of TDMA protocols for the multiple access 
channel [5, IO]. 

111. PROPERTIES OF THE GOLDEN 
RATIO POLICY 

With these preliminaries behind us, we can now state the 
main theorems. As the proofs are intricate, we shall refer the 
interested reader to [8]. Consider a session that passes 
through three of more nodes, such as session 3 in figure 1 .  
It will be assigned certain slots in the transmission schedule 
at node 1 and these slots may or may not be synchronized 
with those allotted it at node 2. In general, they will not, 
and consequently we must have buffers to hold enqueued 
packets. The transmission schedule for the network pictured 
in figure 1 is shown in figure 2. Sessions 1 ,  2 and 3 are al- 
located two slots each at node l and sessions 3 and 4 share 
the slots at node 2 in the ratio 2:l .  Note that a substantial 
skew exists between the two transmission schedules. The 
number of buffers required will depend on the skew between 
the two schedules, and is next computed in the special case 
when X, is a Fibonacci number. 
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An upper bound however can be found, and is next pre- 
sented. 

I I 

Figure 2. The Transmission Schedules at Nodes 1 and 2. 

Theorem 1: Consider a Golden Ratio policy and suppose 

The total number of slots at every node is a Fibonacci 

The number of slots allotted to some session, say ses- 

Session 1 is allotted the same number of slots at every 

One transmission buffer which can be shared by all 

Then if k, = k or k, 5 2, exactly 1 buffer is required by the 
session at every node on its path other than its source and 
destination, and if k, < k, exactly 2 buffers are required by 
it. 

that 

1. 
number, say Fk, 

sion 1, is a Fibonacci number, say Fk,, (1 5 k, 6 k), 

node it encounters, and 

2. 

3. 

4. 
the sessions is available. 

Theorem 2: Consider a Golden Ratio Policy and suppose 
that 

1. The total number of slots at every node N, is not a 
Fibonacci number, 

2. Schedules are globally synchronized (i.e. each slot 
starts and ends at exactly the same time at every node), 

3. The number of slots allotted to some session, say ses- 
sion 1, is a Fibonacci number, say Fk,, 

Session 1 is allotted the same number of slots at every 
node it encounters, and 

One transmission buffer which can be shared by all 
the sessions is available. 

Then if k, 6 2, exactly 1 buffer is required by the session 
at every node on its path other than its source and destina- 
tion, and in all other cases exactly 2 buffers are required by 
it. 

4. 

5. 

When the total number of slots, N, is a Fibonacci num- 
ber, but the number of slots allotted to a session , is not , 
the number of buffers required cannot be computed exactly. 

Theorem 3: Consider a Golden Ratio policy and suppose 

The total number of slots at every node is a Fibonacci 

The number of slots, X,, allotted to a session, say 

Session 1 is allotted the same number of slots at every 

One transmission buffer which can be shared by all 

Then the number of buffers required by the session at every 
node other than the source and destination is upper bounded 
by 2m, where m is the smallest number of distinct Fibonacci 
numbers that XI can be represented as the sum or difference 
of; and 2m in turn is upper bounded by 

that 

1. 
number, say Fk, 

session 1, is not a Fibonacci number, 

node it encounters, and 

the sessions is available. 

2. 

3. 

4. 

r iog,&x,i -1  
1. 

2 
2 r  

IV. PERFORMANCE ANALYSIS 

If the conditions imposed by Theorems 1 and 2 are not 
satisfied, no simple method of computing the buffer re- 
quirement exists. Bounds on the number of buffers required 
may, however, be found either by Theorem 3 or via the 
staircase technique described in [SI. It is interesting to ex- 
amine the bound on the number of buffers required for a 
fixed N as m is varied, as shown in the next two figures for 
N = 89 and N = 150. Note that 89 is a Fibonacci number 
while 150 is not. The curves are seen to be quite jagged, 
but tend to increase with m as can be seen from their en- 
velope. Sharp dips are seen at Fibonacci numbers, even when 
the total number of slots is not a Fibonacci number. On 
looking at figure 3 we see that the staircase technique often, 
though not always, gives us the correct buffer requirements. 
For example, when Fk = 5 5 ,  it bounds the buffer require- 
ments by 3. Theorem 1, on the other hand tells us that only 
two buffers are required. 

Let B(X,N) denote the number of buffers required by a 
session that is assigned X out of N slots. Clearly, if 
X = XI f X,, B(X,N)  5 B(X,, N) + B(X,,N), and this bound 
is shown in dotted lines in figure 3. As N is then a Fibonacci 
number, we know the buffer requirements for all m that are 
Fibonacci numbers. The decomposition approach is seen to 
be useful mainly when m is large. When N is not a Fibonacci 
number, we do not know the buffer requirements except 
when m = 1,2 and N.  This makes the decomposition ap- 
proach useless for all but the largest values of m. 
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VIA STAIRCASE 

NUMBER OF SLOTS ULOllED TO A SESSlW 

Figure 3. Bounds on the number of buffers required by a 
session 

10 im 
NUMBER OF Sum MLOlTED TO* SpYoN 

Figure 4. Bounds on the number of buffers required by a 
session 

Lastly, we analyze network delays. There are two com- 
ponents of the delay- the first occurs at the source node, 
where incoming packets experience queueing delays, while 
the second occurs at intermediate nodes, where packets have 
to wait in buffers awaiting service. A detailed analysis of the 
first component can be found in [4]. Unfortunately, the 
expression for the waiting time presented there is complex, 
and is not very useful for quick "back of the envelope" 
calculations. If packets are assumed to arrive in a Poisson 
stream, a simple approximation for the mean waiting time 
exists [SI. Let N be the total number of slots, and let XI 
be the number of slots allotted to session 1. Let the dis- 
tances between suceesive permits to the session be 
U', . . . , dX,. Define the average interpermit distance 
d ' A  N / X l ,  and let A be the mean number of arrrivals in d 
slots. Then if A < 1, the mean waiting time of a packet is 
approximately 

where T is the length of transmission cycle (in seconds). 

The approximation was compared to a simulation. A 
million packets were processed, and the 99% confidence 
intervals were less than 1% of the mean. The error in the 
approximation is plotted in the next figure, for N=89, and 
is seen to be at most 2.5%. 

X=.S 
X=.7 

X = . 9  

______._---- 

._ ".t , , , , , , , , ,  , , , , , , , L  . . . . . - . 

10 
NUMBER OF Sum ALLOTTED TO A SmKlN 

Figure 5. Error in mean waiting time. 

The second component of the waiting time cannot be 
computed exactly, though it can be bounded and this is done 
in the next theorem 

Theorem 4: Consider a Golden Ratio policy and suppose 

The total number of slots at every node is N ,  and Fk, 
is the largest Fibonacci number that does not exceed 
N, 
The time taken for a transmission cycle is T seconds, 

Sessions are allotted the same number of slots at every 
node they encounter, 

Some session, say session 1 is a h hop session, is al- 
lotted XI slots. and requires b buffers at every node it 
passes through. 

F,,is the largest Fibonacci number that does not exceed 

Then the delay experienced by a packet sent by session 1, 
from the time it is transmitted from the initial node to the 
time it is received at the final node is upper bounded by 

that 

1 .  

2. 

3. 

4. 

5 .  
XI. 

b(h - 1)T X F k -  k, +2/F, 

V. DESIGN CONSIDERATIONS 

We now present two extensions of the Golden Ratio 
Policy that reduce the buffer requirements and eliminate the 

e of >I 
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First let us consider the reduction of buffer requirements. 
From Theorem 3, the number of buffers needed for a session 
to fully utilize its slots grows at most logarithmically with the 
number of slots assigned to it. For example, when N = 
1000, B(X, 1000) varies between 2 and 7 as X ranges from 
2 to 999. This implies that the total number of buffers re- 
quired at a node is larger when there are many sessions, each 
assigned a few slots, than when there are a few sessions, 
each of which is assigned a substantial fraction of the avail- 
able slots. Therefore, multiplerhg many sessions into larger 
sessions can reduce the buffer requirements. 

To evaluate the effectiveness of multiplexing in buffer re- 
duction, the differences between B(X,  + X, + ... + x,,,, N) 
and B(X, ,  N) + B(X,, N) + ... + B(X,, N) are computed for 
every possible combination of X, + X, + ... + X,,, 5 N , 
where m is the number of constituent sessions in a "multi- 
plexed session." The results for three different m's (m = 
2, 3 and 4) and N's (N = 89, 150, and 300) are summarized 
in two Tables 1 and 2. For example, about 40, 55, or 65 
percent reduction can be obtained when m is 2, 3, or 4, re- 
spectively. Although results for large m are not available, 
multiplexing is clearly very effective in reducing buffer re- 
quirements. 

89 

150 

39% 55% 64% 

40% 71% 79% 

300 I 42% I 58% 

Table 1. Average buffer reduction from multiplexing 

67% 

We now turn to the design aspect of multiplexing, and 
investigate the criteria used to decide the sessions that will 
benefit most from combining. This issue is addressed in 
[l]. A "Path-Based" scheme is proposed and compared with 
two other schemes: "Route-Based" and "Hop-Count" 
schemes. In the Path-Based scheme, two routes are com- 
bined together into a funnel-like entity when they enter a 
node if both their destinations and subsequent routes are 
identical. In the Route-Based scheme, sessions are combined 
together into a route when they have the same source, des- 
tination, and physical path. In the Hop-Count scheme, ses- 
sions are combined together if they have the same hop count. 

The number of entities (or combined sessions) in the 
Path-Based scheme is shown to be better than in the 
Route-Based scheme by a factor of the average route length 
(measured in hops). The average route length typically lies 
between 3 and 4. The Hop-Count scheme, although has the 
least multiplexed entities, is not desirable because of possible 
congestion unfairness. 

Secondly, we examine the possibility of reducing the 
wastage of unused slots. The Golden Ratio Policy is a 
schedule based scheme, and slots can be used only by the 
session assigned to them. This problem, which is typical of 
time division multiplexed (TDM) schemes can be solved by 
adopting statistical time division multiplexing (STDM). Two 
STDM schemes which mimic the Golden Ratio Policy are 
next presented. Note that some form of flow control is 
needed in any STDM scheme. A session may have different 
numbers of slots available to it on different links, depending 
on the number of idle sessions on each link, and its buffers 
can overflow if it has more slots on an upstream link than 
on a downstream link. 

The first scheme, referred to as the "Dynamic Substi- 
tution" scheme, is based on a scheduling sequence and a 
replacement selection procedure. The scheduling sequence, 
say SEQ, is generated according to the Golden Ratio Policy. 
For example, SEQ(i)  = j implies that slot i is assigned to 
session j .  At each slot, if the designated session is active, 
then one of its packets will be transmitted in the slot. If not, 
a replacement session will be selected to use the slot instead. 

The selection of the replacement session can be carried 
out in many ways. For example, when session profiles are 
known, it may be desirable to select bursty sessions and 
avoid stream oriented sessions such as packetized voice, as 
stream oriented sessions do not usually need more bandwidth 
than they have been allotted. Among bursty sessions, 
moreover, the ones with heavier load should be given higher 
priority. Another intuitively appealing consideration, which 
tends to minimize the variance of the delay, is to select a 
session that currently has the longest queue. (This is the in- 
verse of the classical "shortest queue routing" policy [ 133, 
which minimizes the mean waiting time of a customer). The 
second scheme, which we call the "Single Pointer" scheme, 
also uses the Golden Ratio Policy to generate a scheduling 
sequence, say SEQ. Unlike the Dynamic Substitution 
scheme, however, there is no fixed association between the 
indices in SEQ and the slot numbers. Instead, the actual 
transmission is completely governed by a single pointer in 
the following manner: 

1 .  

2. 

3. 

Move the pointer to the next entry of SEQ. 

If the pointed session is active, transmit its packet. 

If not, go to 1. 

Lastly, we examine the conditions under which the 
Single Pointer Scheme and the Dynamic Substitution Scheme 
preserve the structure of the Golden Ratio Policy. 

Lemma 1: Consider a Golden Ratio Policy with S sessions 

and let $4 4 N . Suppose that sessions are sequentially 
assigned,'?.e., session 1 is assigned its slots first, session 2 
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allotted. Then when session S or 1 is idle, the Single Pointer 
scheme is a Golden Ratio Policy with (S-1) sessions and 
cycle length (N - X,) or ( N  - XI). 

Theorem 5: Consider a Golden Ratio Policy with S ses- 

sions, let $4 N, and suppose that sessions are sequentially 
assigned. '-*hen if sessions i, i + l ,  ..., i+Z-1 are the only 
active sessions, the Single Pointer scheme is identical to a 
Golden Ratio Policy with Z sessions and a cycle length of 
x, + &+, . .. + x,+z-,. 

Empirical results indicate that the Single Pointer scheme 
and the Golden Ratio Policy are identical more often than 
proven in Theorem 5. Moreover, when they are different, 
the differences are very small. Therefore, it is reasonable to 
extend the performance results derived in previous section 
to "approximate" the Single Pointer STDM scheme. In 
particular, numerical results indicate that when Y slots are 
allotted to idle sessions, the Dynamic Golden Ratio can re- 
duce the mean waiting time occurs at the source node by a 
factor of (N-Y)/N. 

VI. CONCLUSIONS 

A schedule based flow control scheme constructed 
around the Golden Ratio policy that requires very few buff- 
ers and guarantees low end to end delays in a network has 
been presented. Various properties of the policy have been 
determined, and a number of implementational issues have 
been examined. Many open questions remain, however. 

Tighter bounds on the buffer requirements when the 
number of slots assigned to a session is not a Fibonacci 
number would be of interest. An exact result would be of 
great interest to mathematicians, but is probably not deter- 
minable. Additionally, some understanding of the behavior 
of the interslot distances when the total number of slots is 
not a Fibonacci number would prove very useful. 

Two other topics merit further investigation. 

1. A provably optimal (under some suitable measure of 
optimality) scheme for combining sessions to reduce the 
buffer requirements. 

An policy for assigning idle slots to sessions with en- 
queued packets so as to minimize the mean waiting time 
of a packet. We conjecture that the optimal policy will 
be to serve the session with the longest queue, but no 
proof of this has been found. 

2. 
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