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Generalized Max-Min Rate Allocation: Theory and
a Simple Implementation

Yiwei Thomas Hou, Shivendra S. Panwar, and Henry Tzeng

Abstract: An important concept in the available bit rate (ABR)
service model is the minimum cell rate (MCR) guarantee as well
as the peak cell rate (PCR) constraint for each flow. Due to the
MCR and PCR requirements, the well-known max-min rate allo-
cation policy no longer suffices to determine the rate allocation for
each flow since it does not support either MCR or PCR. In this
paper, we present a generalized max-min (GMM) rate allocation
policy, which supports both the MCR and PCR requirements for
each flow. Furthermore, a simple distributed algorithm using the
ABR flow control protocol is developed to achieve the GMM rate
- allocation in a distributed network environment. The effectiveness
of this distributed algorithm is demonstrated by simulation results.

Index Terms: Max-min rate allocation, available bit rate, minimuom
rate, peak rate, flow control.

I. INTRODUCTION

One key performance objective for flow-oriented packet-
switched networks is to optimally share network bandwidth
among all traffic flows. Optimality here typically includes two
components: 1) each flow is entitled to as much network band-
width as any other flow (i.e., fairness), and 2) the network band-
width is utilized efficiently.

The classical max-min rate allocation has been widely re-
garded as an optimal bandwidth sharing policy among traffic
flows in the network [1]. In ATM networks, the max-min rate
allocation has been used for the available bit rate (ABR) service
[2]. By the specifications in [2], on the establishment of an ABR
flow, the user shall specify to the network both a minimum rate
and a maximum rate, designated as minimum cell rate (MCR)
and peak cell rate (PCR), respectively, for the requested flow.
The source starts to transmit at an initial cell rate (ICR), which
is greater than or equal to MCR, and may increase its rate up
to PCR depending upon congestion and bandwidth information
from the network.

Since the classical max-min does not address how to deter-
mine rate allocation for each flow when there are MCR and PCR
constraints, an MCR-offsetted and an MCR-weighted max-min
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policies were proposed in [3], [4].

In this paper, we generalize the classical max-min rate alloca-
tion. We present a generalized max-min (GMM) rate allocation
policy with both the minimum rate guarantee and the peak rate
constraint for each flow. We also present a centralized band-
width assignment algorithm to achieve the GMM policy and
prove its correctness.

Based on the centralized theory for the GMM policy, we de-
velop a distributed algorithm to achieve GMM rate allocation.
Our distributed algorithm employs the ABR flow control pro-
tocol and is based on the Intelligenr Marking technique by Siu
and Tzeng [5], [6] which was developed for the classical max-
min. We use simulation results to demonstrate the effectiveness
of our distributed algorithm to achieve GMM rate allocation.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the theory of GMM rate allocation to general-
ize the classical max-min with both the minimum rate gnarantee
and the peak rate constraint for each flow. In Section I1I, we de-
velop a distributed algorithm using ABR flow control protocol
to achieve the GMM policy. In Section IV, we present simu-
lation results to demonstrate the effectiveness of the distributed
algorithm. Section V concludes this paper.

II. GENERALIZED MAX-MIN RATE ALLOCATION

We organize this section as follows. In Section II-A, we

" briefly summarize key results for the classical max-min rate al-

location [1]. In Section II-B, we present the GMM rate allo-
cation, which generalizes the classical max-min. A centralized
algorithm to determine rate allocation for the GMM policy is
then presented in Section II-C.

A. Preliminaries

In our model, a network N is characterized by a set of links
L and flows S. Each flow s € § traverses one or more links in
L and is allocated a specific rate r*. Denote S; the set of flows
traversing link £. Then the (aggregate) allocated rate ¢ on link
£ € Lof the networkis Fp =3 5, 7°.

Let C; be the capacity of link £. A link £ is saturated or fully
utilized if Fy = Cy. Arate vectorr = {r® | s € S} is feasible
if the following two constraints are satisfied: 1) 7° > 0 for all
s€S;and 2y Fy < Cyforallf € L.

A rate vector r is max-min if it is feasible, and for each flow s,
one cannot generate a new feasible rate vector by increasing the
allocated rate r° without decreasing the allocated rate of some
other flow ¢ with a rate r? already less than or equal to 7 in the
rate vector 7. More formally, we have the following.
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Fig. 1. A peer-to-peer network.

Definition 1: A rate vector r is max-min if it is feasible, and
for each s € S and every feasible rate vector 7 in which #% > r®,
there exists some flow ¢ € S such that 7* > r¢ and »t > 7L

Definition 2: Given a feasible rate vector r, a link £ € £ is
a bottleneck link with respect to r for a flow s traversing ¢ if
Fy = Cyand > r® for all flows ¢ traversing link £.

Theorem 1: A feasible rate vector 7 is max-min if and only
if each flow has a bottleneck link with respect to r.!

Algorithm 1: The following iterative steps describes the
centralized algorithm to determine rate allocation for each flow
for the classical max-min policy.

1. Start the rate allocation of each flow with zero.

2. Increase the rate of all flows with the smallest rate such
that some link becomes saturated.

3. Remove those flows that traverse saturated links and their
associated bandwidth from the network.

4. If there is no flow left, the algorithm terminates; other-
wise, go back to Step 2 for the remaining flows and re-
maining network capacity.

Theorem 2: There exists a unique rate vector that satisfies
the max-min rate allocation.

A proof of Theorem 2 is given in the Appendix.

B. Generalized Max-Min Rate Allocation

We are now ready to formally define the generalized max-
min rate allocation policy with minimum rate and peak rate con-
straints for each flow.

Let MCR?® and PCR® be the minimum rate requirement and
the peak rate constraint for each flow s € S. For the sake of
feasibility, we make the following assumption.

Assumption 1: The sum of all the flows’ MCR requirements
traversing any link does not exceed the link’s capacity, i.c.,
> ses, MCR® < Cpforevery £ € L.

This assumption is enforced by admission control at call setup
time to determine whether or not to accept a new flow.

Definition 3: A rate vector r = {r®|s € §} is ABR-feasible
if the following two constraints are satisfied:

MCR?® < r® < PCR?®, foralls € S,
F < Cy, forall £ € L.

Before we give a definition for the GMM rate allocation, we
use the following simple example to illustrate its basic concept.
In the peer-to-peer network configuration (Fig. 1), the output
port link of SW1 (Link12) is the only bottleneck link for all

L For a proof of Theorem 1, see [1].

Table 1. MCR, PCR, and GMM rate allocation of each flow in the
peer-to-peer network.

| Flow ]| MCR | PCR | GMM Rate Allocation |

sl 040 | 1.00 0.40
52 0.10 | 0.25 0.25
53 0.05 | 0.50 0.35

flows. Assume that all links have the same normalized one unit
of capacity. When there is no MCR and PCR requirements for
each flow, using the centralized max-min algorithm described in
Algorithm 1, we allocate to each flow with rate of % Now let the
MCR requirement and PCR constraint for each flow be as listed
in Table 1. It is clear that the classical max-min is no longer
applicable here because it does not support either the MCR or
the PCR.

In the following, we describe the iterative steps of the central-
ized algorithm to determine rate allocation for each flow under
the generalized max-min policy, which we will formally define
(Definition 4) shortly.

Algorithm 2: This algorithm describes how to determine the
rate allocation for each flow under GMM.2

1. Start the rate of each flow with its MCR.

2. Identify the flow with the smallest rate among all the re-
maining flows and increase the rate of sach flow(s) until
one of the following events first takes place:

e the rate of such flow(s) reaches the second smallest
rate among all the remaining flows;

e some link saturates;

e the rate of such flow(s) reaches its PCR.

3. If some link saturates or such flow reaches its PCR in
Step 3, remove such flows that either traverse this satu-
rated link or reach their PCRs, respectively, as well as the
network capacity associated with such flows from the net-
work.

4. If there is no flow left, the algorithm terminates; other-
wise, go back to Step 2 for the remaining flows and net-
work capacity.

With the above centralized algorithm for the GMM rate allo-
cation. we are able to complete the rate allocation problem for
the peer-to-peer network configuration (Fig. 1) with the MCR
and PCR requirements listed in Table 1.

Example 1: (A Peer-to-Peer Network) Using Algorithm 2,
we list the rate allocation for each flow at each iteration in Ta-
ble 2, which are explained briefly as follows. A graphical dis-
play of the iterative steps in Table 2 is also shown in Fig. 2.

Step 1 — As shown in Fig. 2 and Table 2, we start the rate
allocation for each flow with its MCR requirement (shown in
the darkest shaded areas in Fig. 2).

Step 2 — Since the rate of s3 (0.05) is the smallest among all
flows, we increase it until it reaches the second smallest rate,
which is 0.1 (s2).

Step 3 — The rates of both s2 and s3 being 0.1, we increase
them together until s2 reaches its PCR constraint of 0.25.

2 A formal mathematical description of this algorithm will be given in Sec-
tion I1-C.
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Table 2. Herations of centralized rate allocation algorithm for the peer-to-peer network configuration.

Iterations Flow(MCR, PCR) Remaining Link Capacity
51(0.40, 1.00) [ 52(0.10,0.25) | s3(0.05, 0.50) Link 12
Initialization 0.40 0.10 0.05 0.45
1st 0.40 0.10 0.10 0.40
2nd 0.40 10.25] 0.25 0.10
3rd 1040 | 1035 | 0
0.50 . . .
necessary to have a more precise definition for GMM-bottleneck
link rate, which is presented as follows.
0.40

3rd iteration

0.30

2nd iteration

1st iteration

Initialization

sl s2 53

Fig. 2. Graphical display of rate allocation for each flow at each iteration
in the peer-to-peer example.

Step 4 — Remove s2 (with a rate of 0.25) out of future itera-
tions and we now have the rates of 0.40 and 0.25 for s1 and s3,
respectively, with a remaining capacity of 0.10 on Link 12.

Step 5 — Since s$3 has a smaller rate (0.25) than s1 (0.4), we
increase the rate of s3 to 0.35 and Link 12 saturates. The final
rate assignments are 0.40, 0.25, and 0.35 for s1, s2, and s3,
respectively.

Informally, a rate vector r is GMM if it is ABR-feasible, and
for each flow s, one cannot generate a new ABR-feasible rate
vector 7 by increasing the allocated rate r° without decreasing
the allocated rate of some other flow ¢ with a rate 7 already less
than or equal to 7° in the rate vector r. Formally, the GMM rate
allocation is defined as follows.

Definition 4: A rate vector r is Generalized Max-Min
(GMM) if it is ABR-feasible, and for every s € S and every
ABR-feasible rate vector 7 in which #° > r?, there exists some
flow t € S such that #® > 7%, and r¢ > 7.

Since there are MCR and PCR requirements for each flow, we
define a new notion of bottleneck link as follows.

Definition 5: Given an ABR-feasible rate vector r, a link
£ € L is an GMM-bottleneck link with respect to r for a flow s
traversing £ if Fy = Cy and r® > r* for every flow ¢ traversing
link # for which r* > MCR®.

Theorem 3: An ABR-feasible rate vector r is GMM if and
only if each flow has either an GMM-bottleneck link with re-
spect to 7 or a rate assignment equal to its PCR.

For a proof of Theorem 3, see the Appendix.

In Example 1, Link 12 is an GMM-bottleneck link for both
s1 and s3 (see Definition 5). On the other hand, s1 and s3 have
different rate allocations (0.4 tfor s1 and 0.35 for s3). Thus, it is

Tetl {event A} be the indicator function with the following
definition.

1 _ | 1, ifevent Ais true;
{event A} = ) o otherwise.

Definition 6: Given an GMM rate vector r, suppose that link
£ € L is an GMM-bottleneck link with respect to r and let 7
denote the GMM-bottleneck link rate at £. Then 7, satisfies

e ZI{MCR"'gu} + ZMCR"l{MCR*m}

i€Uy 1E€U
- a-Yr
i€EVe
where
e [, denotes the set of flows that are GMM-bottlenecked at
link £;

e )y denotes the set of flows that are either GMM-
bottlenecked at some other link or have rate assignments
equal to their PCRs and r} < 7¢ fori € V.

It is worth pointing out that in the special case when MCR?® =
0 for every s € S, the GMM-bottleneck link rate 7, in Defini-
tion 6 becomes:

T Ul =Ce= Y 1,

i€Ve

or

Ce — Eieye Té
e ’

=

where |{/p| denotes the number of flows in I/, This is exactly
the expression for the classical max-min rate allocation at link
L.

With Definition 6, we are now ready to go back to Example 1.
It is now straight forward to see that the GMM-bottleneck link
rate at Link 12 is 0.35.

C. GMM Centralized Algorithm and More Examples

An intuitive description of the centralized algorithm to deter-
mine rate allocation for the GMM was given in Algorithm 2. In
the following, we present the formal mathematical description
of such a centralized algorithm.

Algorithm 3: The following is a formal mathematical de-
scription of the centralized algorithm for GMM rate allocation.
Initialization:
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Table 3. A second example of GMM rate allocation for the peer-to-peer

network.
[ Flow ” MCR | PCR ! GMM Rate Allocationj
sl 040 | 1.00 0.45
s2 0.05 0.10 0.10
s3 0.05 | 0.50 0.45
75:(0) = MCR?, forevery s € S,

Fﬂ(o) = Z MCR?®, foreveryfc L,
s €Sy
k=180 =80 =,
1. Sort all the flows in S into m sets (1 < m < |SE))y:

UL, U2, * - 5 U,

such that 1) each flow in the same set has the same rate;
and 2) rate values in these sets are in increasing order, i.e.,
S <rt < - <rP where s € ui,t € Us, - , P E Unm.

2. ny’ := numberof flows s € u; traversing link ¢, for every
e L
3 a(k) =i
C, — pt=1
min{ min Ce—F"7) ,
£ traversed by s € uy nl(k)
(rt€v2 — ps€u) min_ ¢, (PCR® — r&(F—1))},
ifm>1,

. (Ce—E*M)
min e
£ traversed by s € g nl(k-)
ming ¢ o, (PCR® — r (=1},
sy o B if s € ugg
4. 78 = { ro(k=1) otherwise.
5. FL,(k) r== Z r&®) | forevery £ € LP),
s €S,
6. L&D .= 0] Cp— FP > 0,0€ LB},
7. S¥+1) .= {5 | s does not traverse any link £ € (£ —
LE+1)) and r58) £ PCR®}.
8. k:=k+1.
9. If S is empty, then r(*=1) = {r&(E=1) | 5 € S} is the
rate vector satisfying the GMM policy and the algorithm
terminates; otherwise, go back to Step 3.

min{

ifm=1.

e}

The correctness proof of Algorithm 3 is given in the Ap-
pendix. Note that in Step 1 of Algorithm 3, if m > 1, then the
rate values in us, - - - , Uy, are the MCR values of the flows in
these sets. Also, starting from the second iteration (k = 2), the
sorting procedure in Step 1 only requires minor updates based
on the sorted sets in the previous iteration.

0.5

3rd iteration

0.4 1 2nd iteration

0.1 1st iteration

Initialization

0.0

sl s2 $3

Fig. 3. Graphical display of rate allocation for each flow at each iteration
for the second example of the peer-to-peer network.

1t is clear that by Definition 6 and Algorithm 3, the GMM rate
assignment for a flow s € S can only be one of the following:

e arate assignment equal to its MCR;
e arate assignment equal to its GMM-bottleneck link rate;
e arate assignment equal to its PCR.

Using arguments similar to those in the proofs of Theorems
2 and 3, it can be shown that the following theorem is true.

Theorem 4: There exists a unique rate vector that satisfies
the GMM rate allocation.

We use the following examples to illustrate how Algorithm 3
allocates network bandwidth such that the GMM rate allocation
is satisfied.

Example 2: (A Second Example for the Peer-to-Peer Net-
work) This is the same network configuration (Fig. 1) as for Ex-
ample 1. The MCR and PCR requirements for each flow are
listed in Table 3. The rate allocation for each flow at each it-
eration is listed in Table 4, with a graphical display in Fig. 3.
The GMM-bottleneck link rate at Link 12 is 0.45. Since s2 is
constrained by its PCR, it is equivalent to treating such a flow as
being bottlenecked at some other link, e.g. its access link to the
network.

We use the following three-node example to further illustrate
the concept of GMM-bottleneck link rate. As we shall see, the
GMM-bottleneck link rate of each GMM-bottleneck link being
reached during the iterations of Algorithm 3 has the property of
ascending order.

Example 3: (A Three-Node Network) In this network con-
figuration (Fig. 4), the output port links of SW1 (Link 12) and

Table 4. lterations of the centralized GMM rate allocation algorithm for the second example of the peer-to-peer network.

Iterations Flow(MCR, PCR) Remaining Link Capacity
51(0.40, 1.00) | $2(0.05,0.10) | s3(0.05, 0.50) Link 12
Initialization 0.40 0.05 0.05 0.50
st 0.40 [0.10] 0.10 0.40
2nd 0.40 0.40 0.10
3rd [0.45 | [0.45] 0
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Fig. 4. A three-node network.

Table 5. MCR requirement, PCR constraint, and GMM rate allocation
for each flow under the three-node network.

| Flow | MCR | PCR | GMM Rate Allocation |

sl 020 | 0.50 0.425
52 005 | 0.15 0.150
s3 0.10 | 0.50 0.425
54 050 | 1.00 0.575

5th iteration

4th iteration

3rd iteration
2nd iteration
1st iteration

Initialization

s3 54

sl s2

Fig. 5. Graphical display of GMM rate allocation for each flow for the
GMM at each iteration in the three-node example.

SW2 (Link 23) are the links shared by flows. The MCR require-
ment and PCR constraint for each flow are listed in Table 5. The
rate allocation for each flow at each iteration of Algorithm 3 is
listed in Table 6, with a graphical display in Fig. 5.

The GMM-bottleneck link rate at Link 12 is 0.425, which was
reached at the end of the 4th iteration, and the GMM-bottleneck
link rate at Link 23 is 0.575, which was reached at the end of the

281
Link23
LT e
\ .
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SO s2 —= 54
Forward ATM Forward RM Cell

l Data Cell
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Backward RM Cell

Destination
end
syslem

Source
end
system

Fig. 6. A schematic for ABR flow control protocol.

Sth iteration, and 0.425 < 0.575. In general, by the operation
of Algorithm 3, an GMM-bottleneck link rate obtained at a later
iteration for some link is greater than an GMM-bottleneck link
rate obtained at an earlier iteration for some other link.

Thus far we have completed the centralized theory of the
GMM rate allocation. To demonstrate its practical merit for a
distributed network, we design a distributed algorithm using the
ABR flow control protocol [2] in the next section.

IIi. A DISTRIBUTED ALGORITHM FOR
GMM RATE ALLOCATION

A schematic for ABR flow control protocol is shown in
Fig. 6. Resource Management (RM) cells are inserted period-
ically among ATM data cells to convey network congestion and
available bandwidth information to the source. RM cells con-
tain important information such as the source’s allowed cell rate
(ACR) (called current cell rate (CCR) in the RM cell’s field),
minimum cell rate (MCR) requirement, explicit rate (ER), con-
gestion indication (CI) bit and no increase (NI) bit. All RM cells
of an ABR flow are turned back towards its source after arriv-
ing at the destination. A transit node (either along the forward
direction or along the backward direction) and destination end
system may set the ER field, CI and NI bits in the RM cells.

Table 6. lterations of using the centralized algorithm for GMM in the the three-node network.

Flow(MCR, PCR) Remaining Link Capacity
Irerations sl 52 53 54 Link 12 Link 23
(0.20,0.50) | (0.05.0.15) | (0.10,0.50) | (0.50, 1.00)
Tnitialization 0.20 0.05 0.10 0.50 0.65 030
Tst 020 0.10 0.10 0.50 0.60 030
2nd 0.20 10.15 | 0.15 0.50 0.50 0.30
3rd 020 0.20 050 0.45 030
4th [0.425] [0.425 0.50 0 0.075
Sth [0.575 | 0
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Fig. 7. Switch behavior of intelligent Marking protocol.

Upon receiving backward RM cells, the source adjusts its cell
generating rate accordingly.

There are two modes of switch algorithms, namely, binary
mode and explicit rate (ER) mode. Binary schemes (e.g., ex-
plicit forward congestion indication (EFCI) [9]) rely on a single
bit feedback to indicate congestion. Due to limited feedback
information about network congestion status, the source only
knows that either the congestion in the network is present or
absent, but doesn’t know how much to increase or decrease its
transmission rate. Therefore, the source’s cell rate experiences
oscillations. On the other hand, ER schemes employ rate cal-
culation at a switch to estimate available bandwidth and convey
this information through the ER field in the returning RM cells.
Hence, an ER scheme promises higher efficiency and stability
than a binary scheme.

Our switch algorithm for the GMM policy employs the ER
mode and is based on the Intelligent Marking technique, origi-
nally proposed in [8] and further refined in [5], [6]. The key idea
of this technique is to employ several variables at each link of a
switch to estimate the max-min bottleneck link rate with a small
number of computations. Using the ABR flow control protocol,
the ER field of a returning RM cell is set to the minimum of
all the estimated bottleneck link rates on all its traversing links,
resulting in approximate max-min rate allocation.

Fig. 7 illustrates the switch behavior of the Intelligent Mark-
ing technique [5], [6]. Four variables, MCCR (Mean Current
Cell Rate), UCR (Upper Cell Rate), EBR (Estimated Bottle-
neck Rate), and LOAD, are defined for the following purpose:
1) MCCR contains an estimated average cell rate of all flows
traversing this link; 2) UCR contains an estimated upper limit of
the cell rates of all flows traversing this link; 3) EBR contains
an estimated bottleneck link rate; 4) LOAD corresponds to the
aggregated cell rate entering the queue normalized with respect
to the link capacity and is measured over a period of time. Fur-
thermore, two parameters TLR and « are defined for each link,
where the value of TLR is the target load ratio, and 0 < o < 1.

Algorithm 4: (Intelligent Marking)

Upon the receipt of RM(CCR, ER) from the source of a flow
if (CCR > MCCR), then
UCR := UCR + a (CCR-UCR);
MCCR := MCCR + a (CCR-MCCR);
Forward RM(CCR, ER) to its destination.
Upon the receipt of RM(CCR, ER) from the destination of a
flow

EBR :=UCR * TLR/ LOAD;
if (QS > QT), then
EBR :=(QT/QS) * EBR;?
if (ER > EBR), then
ER :=EBR;
Forward RM(CCR, ER) to its source.

The Intelligent Marking algorithm is a heuristic algorithm.
We can only give an intuitive explanation on how it works. The
RM cells from all flows participate in exponential averaging for
MCCR with MCCR := MCCR + a(CCR — MCCR) while only
some flows with greater than MCCR (potentially flows bottle-
necked at this link) participate in UCR averaging. EBR is used
to estimate max-min bottleneck link rate and is based on UCR
and LOAD variables. Since 1) there can be only one bottle-
neck rate at a link and it is greater than or equal to any of the
flow’s rate traversing this link; and 2) the returning RM cell’s
ER field is set to the minimum of all the bottleneck link rates
along its path, the final rate allocation through Intelligent Mark-
ing achieves the max-min rate allocation for each flow (see the
“if”” part of Theorem 1).

Another interesting fact is that MCCR is larger than the alge-
braic average of each flow’s CCR traversing this link. This is
because MCCR is updated more frequently by those flows with
relatively larger CCR than those with relatively smaller CCR
traversing the same link.

The most attractive feature of the Intelligent Marking tech-
nique is its scalability and low implementation cost. It does not
require each link of a switch to maintain the state information of
each flow and has O(1) storage requirements and computational
complexity.

So far we have given a detailed description of the Intelligent
Marking technique, which was designed to achieve the classical
max-min without MCR/PCR support. Let’s see how to extend
the Intelligent Marking technique for the GMM rate allocation.

Comparing the definitions for the classical max-min (Defini-
tion 1) and the GMM (Definition 4), we observe that they are
similar—except the additional requirement under GMM that a
rate vector must be ABR-feasible (see Definition 3). This moti-
vates us to take the following steps to design a distributed algo-
rithm for the GMM policy.

1. Continue to use Intelligent Marking (Algorithm 4) as

3This step is a finer adjustment of the EBR calculation using buffer occupancy
information and is not shown in Fig. 7 due to space limitation in the figure. QS
is the Queue Size of the output link and QT is a predefined Queue Threshold.
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Fig. 8. {a) The cell rates of all flows; (b) the link utilization and queue size of the congested switch for the first example of the peer-to-peer network.

switch algorithm for the GMM policy. This will also
satisfy the second requirement for the ABR-feasibility
(Fr < Cpforall £ € L) due to the nature of Intelligent
Marking, i.e., queue size is always kept finite.

2. Let each ABR source enforce the first requirement of
ABR-feasibility, i.e., MCR® < 7¥ < PCR® forall s € S.

The following algorithm specifies the source behavior of our
distributed algorithm.

Algorithm 5: (Source Behavior)
The source starts to transmit at ACR := ICR, which is greater
than or equal to its MCR; For every N, transmitted ATM data
cells, the source sends a forward RM(CCR, MCR, ER) cell with
CCR := ACR; MCR := MCR; ER :=PCR;
Upon the receipt a backward RM(CCR, MCR, ER) from the
destination, the ACR at source is adjusted to:
ACR := max{min{(ACR + AIR), ER, PCR}, MCR}.

The destination end system simply returns every RM cell back
towards the source upon receiving it.

IV. SIMULATION RESULTS

In this section, we implement our distributed algorithm on
our network simulator and perform simulations to demonstrate
its effectiveness in achieving the GMM policy. The switches in
all the simulations are assumed to have output buffers with a
speedup equal to the number of their ports. The buffer of each
output port of a switch employs the simple FIFO queuing disci-
pline and is shared by all flows going through that port.

In all of our simulations, we assume persistent sources. The
network configurations that we use are the peer-to-peer and
three-node network configurations shown in Figs. 1 and 4, re-
spectively, and the parking-lot (Fig. 11) network configuration.

Table 7 lists the parameters used in our simulation. The dis-
tance from source/destination to the switch is 100 m and the
link distance between switches is 10 km (within the scope of a
regional enterprise network).

A. The Peer-to-Peer Network

In this network configuration (Fig. 1), the output port link of
SW1 (Link 12) is the only bottleneck link for all flows.

Table 7. Simulation parameters.

End PCR PCR
system | MCR MCR
ICR MCR
Nrm 32
AIR 3.39 Mbps
| Link | Speed | 150 Mbps |
Switch | Cell switching delay 4 us
o 0.125
Load/utilization 500 us
measurement interval
Queue threshold for 50 cells
ER adjustment
Output buffer size 2000 cells

Fig. 8(a) shows the ACR at source for flows s, s2, and s3, re-
spectively with the MCR/PCR requirements for each flow listed
in Table 1. The cell rates shown in the plot are normalized with
respect to the link capacity (150 Mbps) for easy comparison with
those values obtained with our centralized algorithm under unit
link capacity (Table 1). After the initial transient period, we
see that the cell rate of each flow matches its respective rate in
Table 1. To stady the network utilization of our distributed al-
gorithm, we also show the inter-switch link utilization (Link 12)
and the queue size of congested switch (SW1) in Fig. 8(b). We
find that the link is 100% utilized with reasonably small buffer
requirements.

Similarly, Fig. 9(a) shows the ACR at source for each flow
with the MCR/PCR requirements listed in Table 3 and Fig. 9(b)
shows the link utilization and queue size of Link 12. Again,
we find that the cell rates under our distributed algorithm match
with Table 3 with 100% link utilization and small buffer require-
ments.

B. The Three-Node Network

For this configuration (Fig. 4), the output port links of SW1
and SW2 are the GMM-bottleneck links.

Fig. 10(a) shows the normalized cell rate of each flow under
our distributed algorithm. Comparing with the rates obtained by
our centralized algorithm in Table 5, we find that after the initial
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Fig. 10. (a) The cell rates of all flows; (b) the link utilization and queue size at the output ports of congested switches for the three-node network.

Table 8. MCR requirement, PCR constraint, and GMM rate allocation of
each flow for the parking-lot network configuration.

| Flow || MCR | PCR | GMM Rate Allocation |

The GMM-bottleneck link rate at Link 34 is 0.225.
Fig. 12(a) shows the normalized cell rates of each flow un-
der our distributed algorithm. We see that they match quite

well with the rates listed in Table § after initial transient period.
Fig. 12(b) shows the link utilization and buffer occupancy of the
congested link (Link 34). Again, the GMM-bottleneck link is
100% utilized with small buffer requirements.

51 0.05 | 0.50 0.225
52 005 | 0.15 0.150
53 0.10 | 0.50 0.225
54 040 | 050 0.400

transient period, the rate allocation through our distributed algo-
rithm matches quite well with the GMM rate allocation listed in
Table 5.

Fig. 10(b) shows the link utilization at Link 12 and Link 23 as
well as the buffer occupancy at output ports of SW1 and SW2.
We find that the GMM-bottleneck links are 100% utilized with
small buffer requirements.

C. The Parking-Lot Network

The parking-lot configuration that we use is shown in Fig. 11
where flows 51 and s2 start from the first switch and go to the
last switch. s3 and s4 start from SW2 and SW3, respectively,
and terminate at the last switch. Here, Link 34 is the only GMM-
bottleneck link.

Table 8 lists the MCR and PCR constraints for each flow and
the rate assignment for each flow under the centralized GMM
rate allocation algorithm. Note that 52 is constrained by its PCR,
while Link 34 is the GMM-bottleneck link for s1, s3, and s4.

In summary, based on the simulation results in this section,
we have demonstrated that our distributed algorithm achieves
the GMM rate allocation policy in a regional enterprise network
environment.

For a wide are network, the effectiveness of our simple dis-
tributed algorithm depends on careful system parameter tuning
to minimize oscillations. Here, a more sophisticated distributed
algorithm using per-flow state information [7] might provide
better performance. But in a regional enterprise network en-
vironment, where implementation cost is critical, our simple
algorithm is a viable solution (O(1) storage requirements and
computational complexity).

V. CONCLUSIONS

The main contributions of this work are the generalization of
the theory of the classical max-min to include the minimum rate
and peak rate constraints for each flow, and the development of
a simple distributed algorithm to achieve the generalized max-
min rate allocation policy. Simulation results based on several
benchmark network configurations demonstrated the effective-
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Fig. 12. (a) The cell rates of all flows; (b) the link utilization and queue size of the congested switch for the parking-lot network.

ness of our distributed algorithm.

APPENDIX
A proof of Theorem 2 is given as follows.

Proof: 'The existence part is proved by the construction
of a rate vector through a centralized rate allocation algorithm
(e.g., Algorithm 1) and show that the vector satisfies the max-
min policy. Therefore, we only need to prove the uniqueness
part here. Suppose that the rate vector r is max-min and we will
show that there cannot exist another rate vector which is also
max-min.

Assume that there is some other feasible rate vector # # r
which is also max-min. Then there must exist a flow s € S such
that 75 > % (If #* < r° for every s € S, then some flow in 7
does not have a bottleneck link and the rate vector ¥ cannot be
max-min). For the rate vector r, at the bottleneck link £ for flow
s, we have Fy = Cp and r® > r® for all ¢ traversing £. Since
7% > 1, for feasibility we must have some flow t with #f < ¢f
at the bottleneck link £ for flow s. Thus the quantity

)

is positive. Therefore, we can increase #¢ by § while decreas-
ing the same amount of rate from flow s with #¢ on the link
¢ traversed by 5 and ¢ with Fy = C,. We maintain feasibility
without decreasing the rate of any flow p with 77 < 7 and this
contradicts the max-min definition of the rate vector 7. O

§ = min{(7* —r*),

The following is a proof for Theorem 3.

Proof: To show the “only if ” part, we suppose that the
ABR-feasible rate vector r is GMM and assume that on the
contrary that there exists some flow s € S which has nei-
ther an GMM-bottleneck link with respect to r nor a rate as-
signment equal to its PCR. Then for every non-saturated link £
(Fy < Cy) traversed by s, we can increase r° by an increment
until it reaches the PCR of s or some link saturates, whichever

is smaller. For every saturated link £ (Fy = C)) traversed by s,
if T = {t | r* > MCR?, t traversing £} is nonempty, there must
exista flow p € T, p # s, such that 7P > r*. Thus the quantity

min{(C; — Fy), (PCR®* —7r°)} if Fy < Cy,

%= 3 min{(? - %), (- — MCRP), (PCR’® —r*)}
if Fy = C,

is positive. Now let § be the minimum of d, over all links £ tra-
versed by s. Therefore, we canincrease r° by § while decreasing
the same amount of rate from flow r? on the links £ traversed by
s with Iy = . We maintain ABR-feasibility without decreas-
ing the rate of any flow ¢ with 7 < r®. This contradicts the
GMM definition of the rate vector r.

For the proof of the “if ” part of Theorem 3, we assume that
each flow has either an GMM-bottleneck link with respect to
the ABR-feasible rate vector r or a rate assignment equal to its
PCR.

e Cuase 1: To increase the rate of any flow s with 7° < PCR®
while maintaining ABR-feasibility, we must decrease the
rate of some flow p with r# > MCRP? and p traverses the
GMM-bottleneck link £ of s (flow s must go through an
GMM-bottleneck link since r® < PCR® and we have Fy =
Cy by the definition of an GMM-bottleneck link). Since
r¢ > rP forallpin T = {t | r* > MCR’, ¢ traversing £}
by the definition of GMM-bottleneck link, the rate assign-
ment for any flow s € S with »® < PCR’ satisfies the
definition for GMM rate allocation.

o Case 2: Forany flow s with r® = PCR?, we cannot further
increase the rate of 7 while maintaining ABR-feasibility.
That is, we cannot generate another ABR-feasible rate
vector 7 with #° > 1% Thus, the rate assignment for
any flow s with r® = PCR? satisfies the requirement for
GMM.
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Combining Cases 1 and 2, we have proved the “if” part of the
theorem. O

The correctness proof of Algorithm 3 is given as follows.

Proof: Since 1) At least one of the following three events
happens during an iteration of Algorithm 3: i) The rate of flows
in u; reaches the rate of flows in us, which is MCR®, ¢ € us, ii)
Some link saturates, and i) Some flow in 1, reaches its PCR;
and 2) the number of flows in the network A/ is a constant equal
to |S], the algorithm terminates at most by (2|S| — 1) iterations
(at most (|S] — 1) iterations for (|S] — 1) flows to reach the
maximum MCR value among all flows and another | S| iterations
for each flow to reach its GMM-bottleneck link rate or its PCR).

The correctness of this algorithm is proved by showing that
each flow will either have some GMM-bottleneck link with re-
spect to the final rate vector r or a rate assignment equal to its
PCR when the algorithm terminates. Initially, the rate allocation
of each flow s € Sis 7>(®) = MCR?®. During each iteration, an
equal increment of rate is added to all flows in %, (each flow in
uz has the same rate) and as a result one of the following three
events listed above happens at the end of an iteration.

e Case I: Suppose that the rate of flows in u; reaches the
rate of flows in wus at the kth iteration. Then no flow is
removed from S‘*) during this iteration. The flows in both
u; and uy become the new wuq at the (k + 1)th iteration.
The new w2 at the (k 4 1)th iteration is ug from the kth
iteration, etc. That is, the number of sorted sets m for the
(k + 1)th iteration is 1 less than that in the kth iteration,
Case i can happen at most (|S| — 1) times in executing
Algorithm 3 since the number of flows is a constant with
|S].

e Case 2: Suppose that a link £ is saturated at the kth itera-
tion, and s € S®) traverses £. We have r* > rt for every
t traversing £ such that * > MCR?. That is, link £ is an
GMM-bottleneck link with respect to r for flow s.

e Case 3: Suppose that flow s reaches its PCR at the kth
iteration. Then r*(*) = PCR? and r*®*) will not be in-
creased further during future iterations.

As a result, upon termination of the algorithm, each flow either
has some GMM-bottleneck link or a rate assignment equal to its
PCR. By Theorem 3, the final rate vector r satisfies the GMM
policy. O
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