
162 IEEE COMMUNICATIONS LETTERS, VOL. 6, NO. 4, APRIL 2002

Efficient Buffer Sharing in Shared Memory ATM
Systems With Space Priority Traffic

Rajarshi Roy and Shivendra S. Panwar, Senior Member, IEEE

Abstract—In this letter we study the problem of the optimal
design of buffer management policies within the class ofpushout
and expellingpolicies for a shared memory asynchronous transfer
mode (ATM) switch or demultiplexer fed by traffic containing two
different space priorities. A numerical study of the optimal policies
for small buffer sizes is used to help design heuristics applicable to
large buffer sizes. Simulation studies for large buffer systems are
then presented.

Index Terms—ATM, buffer management, Markov decision
theory, sample path techniques, shared memory switch.

I. INTRODUCTION

M OST of the asynchronous transfer mode (ATM) switch
architectures that have been proposed in the literature

use some buffering to queue cells whose service has been de-
layed due to contention for resources within the switch. The lo-
cation of these buffers and the buffer management policy affects
the switch performance [6]. Some buffer management is neces-
sary to ensure that an output-queued shared-memory switch or
demultiplexer, both of which have multiple output ports each
with its own queue, does not perform poorly when some of the
output queues get overloaded.

Let us describe the system model and the two different classes
of buffer management schemes we will consider. The shared
memory switch (Fig. 1) is modeled by a multiserver queue with
a bounded buffer. The entire buffer is partitioned into two parts:
the main buffer of size and the temporary buffer of size

. Time is slotted and the transmission of a cell takes one
time slot. During one time slot at most cells may arrive to
the system and they are placed in the temporary buffer. The cell
loss priority (CLP) bit indicates whether an ATM cell is of high
or low priority. A cost is incurred for each cell that is dropped
from the system. The cost is higher for the high priority cells.
Once the cells are accepted to the main buffer, first-in–first-out
(FIFO) order is to be maintained within each of the logical
output queues, because cells in the same logical queue may be-
long to the same virtual circuit. For the same reason, in a switch
model reordering of cells is allowed when they are transferred
from the temporary buffer to the main buffer but not in the de-

Manuscript received May 21, 2000. The associate editor coordinating the
review of this letter and approving it for publication was Prof. D. Petr. This
work was supported by the New York State Center for Advanced Technology
in Telecommunications (CATT), Polytechnic University, Brooklyn, NY. This
work was presented at the 33rd Conference on Information Science and Sys-
tems, March 1999.

R. Roy is with the CATT at Polytechnic University, Brooklyn, NY 11201
USA (e-mail: rroy@photon.poly.edu).

S. S. Panwar is with the Department of Electrical and Computer Engineering,
Polytechnic University, Brooklyn, NY 11201 (e-mail: panwar@catt.poly.edu).

Publisher Item Identifier S 1089-7798(02)04493-9.

Fig. 1. The system model.

multiplexer model. The objective is to minimize the long run
average weighted cost that is incurred from the lost cells. De-
pending on the available control we have over the dropping
of cells from the temporary or main buffer and the placement
of cells in the main buffer, we distinguish two classes of poli-
cies,pushoutandexpelling, which are defined in later sections.
The main contribution of this paper is to show that anexpelling
policy helps to increase the admissible load region compared to
pushoutpolicies.

There has been a considerable amount of prior work in this
area [1]–[5]. Our contribution differs from previous work in that
it focuses on multiport devices, packets with priorities and con-
siders broad policy classes.

II. PUSHOUT POLICIES

The class ofpushoutpolicies is defined by the following
rules: 1) a cell can be expelled from the main buffer only by
another cell in the temporary buffer when the main buffer is full;
2) a cell from the temporary buffer can be discarded only if the
main buffer is full; and 3) a cell can never be dropped if there is
room for it in the main buffer.

The priority of a class is reflected by the cost and that
is incurred by the dropping of a cell of high and low priority,
respectively. We want to find out the policy amongst the class
of pushoutpolicies so that

any initial state

any initial state

Here, and are the number of high and low priority
cells dropped from the system up to the end of slot ,
respectively. and are positive real numbers, .

is the expectation when policy is used. One can write
with this value function the dynamic programming equations if
the arrival statistics are completely characterized [9].

The optimal class of policies is defined as the following.
Suppose we are given the number of buffer positions that will

1089-7798/02$17.00 © 2002 IEEE

ROY AND PANWAR: BUFFER SHARING IN SHARED MEMORY ATM SYSTEMS 163

be allocated to a particular logical queue after the drop/pushout
decision at a particular slot time in the main buffer is strictly less
than the number of cells it had in the entire system just before
the decision epoch, i.e., at a given number of cells are to be
dropped/pushed out from each logical queue. Then the rules to
be followed are as follows. 1) Append the cells that are in the
temporary buffer and belong to logical queueto the end of the
main buffer in the allocated position, high priority cells first (if
switch model) or in FIFO order (if demultiplexer model). 2) If
the buffers allocated to logical queuein the main buffer is full,
and there are cells of that logical queue in the temporary buffer,
push out the low-priority cells starting from those closest to the
head of that logical queue. 3) If only high priority cells remain
in a queue, discard all the remaining cells of that logical queue
which are in the temporary buffer. This entire procedure defines
thesqueeze-outclass of policies .

The proof of optimality of the squeeze-out class is not given
here due to space restrictions [8]. Note that we defined the op-
timal pushout policy structure but not the number of buffer po-
sitions allocated to each logical queue for a given system state.

III. EXPELLING POLICIES

The class ofexpellingpolicies has as members all policies
that append the new cells from the temporary buffer and do not
reorder them, i.e., FIFO service order must be maintained. This
class of policies is allowed to drop cells from the main buffer
even when it is not full. We have proved that the optimal policy
within the class belongs to a subset of that class . The
class is defined as the following. 1) Cells from each logical
queue are moved from the temporary buffer to the portion of
the main buffer allocated for it in that slot, either high priority
cells first, or in the FIFO order, depending whether it is a switch
model or a demultiplexer model, respectively. If they do not fit
then low priority cells are expelled starting from those closest
to the head of the queue. 2a) If the cell at the head of the queue
is of high priority then it is served. 2b) If the cell at the head of
the queue is of low priority then either that cell is served or all
the low priority cells from the head of the queue until the high
priority cell closest to the head of the queue are expelled and
that high priority cell is served.

The proof of optimality is not given here due to space re-
strictions [8]. In this case, we have defined the optimal policy
with the exception of: 1) the buffer allocation for each logical
queue for each state and 2) the decision of when to serve the
head-of-line low priority cell or high priority cell.

IV. SIMULATION STUDY FOR A LARGE SYSTEM

In our numerical study we consider a two-ported shared
memory switch. The logical queues are fed by a Bernoulli
arrival process. In [7] we reported that loss probability calcula-
tions using value iteration [10]. We showed that the expelling
policy does allow us to improve the performance of the high
priority class compared to pushout policies at the cost of
some degradation in the performance of the low priority class.
Motivated by that we next present the performance of these
policies for a 8 8 shared memory switch with large buffers
driven by on–off traffic.

Fig. 2. High priority loss versus low priority loss.

In our simulation study we have a 88 switch with a
shared 1000-cell buffer with each input line connected to a
two-stage on-off source, with geometrically distributed on and
off periods. Each burst is destined to one of the outputs. The
idle period can be zero but each burst contains at least one cell.
Cells were marked high or low priority probabilistically. For
the squeeze-out scheme we use “squeeze-out the cell from the
queue with a low priority cell that exceeded its threshold the
most” policy. As we are yet to figure out a way to optimally
assign the thresholds for each logical queue we use identical
thresholds and our policy coincides with ‘squeeze-out the cell
from the longest queue with a low priority cell’ policy.

We apply an heuristic expelling policy on each logical queue
which expels low priority cells from the head of the logical
queues when the number of high priority cells of that queue
exceeded a threshold. We are able to achieve orders of magni-
tude improvement in the high priority loss performance at the
cost of low priority loss performance. We also compared the
performance of blocking or discarding policies as well. Here,
once a cell is accepted it is always served. We set a threshold
for total number of cells acceptable for each logical queue. The
threshold on the number of cells in each logical queue is kept
constant at 400 for the experiments in Fig. 2. Also, for each log-
ical queue, we set another smaller threshold beyond which ar-
riving low priority cells are discarded. This threshold is varied
to achieve different loss performance. In Fig. 2 the letter ‘T’ be-
side the word “Expelling” indicates the expelling threshold and
the same beside the word “Discarding” indicates the low pri-
ority cell blocking threshold in a discarding policy.

The merit of the expelling policy over the squeeze-out policy
is the fact that the performance of low priority traffic can be
traded off for the performance of high priority traffic. For ex-
ample, assume a required maximum high priority loss of
and low priority loss of . Under a squeeze-out policy
for a buffer-size of 1000, an average burst length of 40, a load of
0.80 and with 75% of the total traffic of high priority, we do not
achieve the required loss performance for the high priority cell
but the low priority loss performance is achieved. If we want to

164 IEEE COMMUNICATIONS LETTERS, VOL. 6, NO. 4, APRIL 2002

Fig. 3. Buffer size versus maximum admissible load.

restrict ourselves to the this type of policy we have to increase
the buffer size. Alternatively, we can use the expelling policy to
achieve our goal. This is demonstrated in Fig. 2. This figure also
shows that discarding (blocking) type of policies perform much
worse in general. Apart from that, the policy of changing the
low priority discarding threshold for the purpose of achieving
varying loss requirements is not as flexible as the application of
the expelling policy. Fig. 2 also demonstrates that in the low loss
probability region the improvement due to the expelling policy
is greater. Here, for the purpose of generating simulation data in
a reasonable amount of time, we did not explore a more typical
loss probability region (e.g., for which probability of loss for
high priority traffic is less than 10 and probability of loss for
low priority traffic is 10). But we conjecture from the trend
shown by the curves close to that region, which is the proposed
operating region for ATM switches, the relative improvement
of the expelling policy will be even more pronounced. The loss
performance under all the schemes are very sensitive to the load
and burst-size which is shown in [8, Figs. 2–5].

In Fig. 3 we have demonstrated the fact that under the ex-
pelling policy one can have a greater admissible load than a
pushout policy of the “squeeze-out” class. Here the ratio be-
tween buffer size and the expelling threshold and that of buffer
size and the threshold for low priority cell blocking in the dis-
carding policy is always kept constant at 10 and 20, respectively.
The average value of the burst size is 70, and the fraction of high
priority traffic is 0.75. We performed a simulation based search
to find out the maximum admissible load under both policies
so that loss probability for high priority traffic is less than 10
and for low priority traffic is less than .

Under the expelling policy, as the mix of high priority cell
increases, high priority cells are less likely to get a low priority
cell to pushout and that causes the high priority loss to increase.
Low priority loss also increases because the expelling action
gets triggered more often and the lack of low priority cells in
the system increases the probability that a low priority cell will
get pushed out (Fig. 4).

Fig. 4. Loss variation with traffic mix.

V. CONCLUSION

In this letter we present some properties of the optimum
pushoutand expellingpolicies. Our future goal is to develop
heuristics for finding the various thresholds. Earlier numerical
results for small buffer sizes and i.i.d. arrival process input
indicated that theexpelling policy can improve the high
priority loss performance at the cost of low priority loss
performance,thus allowing for more flexibility in meeting the
cell loss constraints. Similar results are obtained from the
simulation study for larger buffer sizes in this letter.

REFERENCES

[1] F. Kamoun and L. Kleinrock, “Analysis of shared finite storage in a
computer network node environment under general traffic conditions,”
IEEE Trans. Commun., vol. COM-28, pp. 992–1003, July 1980.

[2] G. J. Foschini and B. Gopinath, “Sharing memory optimally,”IEEE
Trans. Commun., vol. COM-31, pp. 352–360, Mar. 1983.

[3] S. X. Wei, E. J. Coyle, and M. T. Hsiao, “An optimal buffer man-
agement policy for high performance packet switching,” inIEEE
GLOBECOM’91, vol. 2, Dec. 1991, pp. 924–928.

[4] I. Cidon, L. Georgiadis, R. Guerin, and A. Khamisy, “Optimal buffer
sharing,”IEEE J. Select. Areas Commun., vol. SAC-13, pp. 1229–1240,
Sept. 1995.

[5] L. Tassiulas, Y. C. Hung, and S. S. Panwar, “Optimal buffer control
during congestion in an ATM network node,”IEEE/ACM Trans. Net-
working, vol. 2, pp. 374–386, Aug. 1994.

[6] M. J. Karol, M. J. Hluchyj, and S. P. Morgan, “Input versus output
queueing on a space-division packet switch,”IEEE Trans. Commun.,
vol. COM-35, pp. 1347–1356, Dec. 1987.

[7] R. Roy and S. S. Panwar, “Optimal space priority policies for shared
memory ATM system,” inProc. 35th Annu. Allerton Conf. on Commu-
nication, Control and Computing, Monticello, IL, Sept. 29–Oct. 1 1997,
pp. 604–613.

[8] , “Optimal space priority policies for shared memory ATM system:
Extended version,” CATT, Polytechnic Univ., Brooklyn, NY, Tech. Rep.,
2000.

[9] S. M. Ross,Introduction to Stochastic Dynamic Programming. New
York: Academic, 1983.

[10] A. R. Odoni, “On finding the maximal gain for Markov decision pro-
cesses,”Oper. Res., vol. 17, no. 5, pp. 857–860, Sept.–Oct. 1969.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

