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Connectivity Properties of a Packet
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Abstract — A model of a packet radio network in which transmitters with
range R are distributed according to a two-di ional Poi point
process with density D is examined. To ensure network connectivity, it is
shown that mR2D, the expected number of nearest neighbors of a transmit-
ter, must grow logarithmically with the area of the network. For an infinite
area there exists an infinite connected component with nonzero probability
if mR2D > N,, for some critical value NN,. We show that 2.195 < N, <
10.526.

I. INTRODUCTION

SIMPLISTIC though widely used model of a mobile
packet radio network is based on the following as-
sumptions (refer to Fig. 1).

1) Nodes in the network lie in a bounded figure of area
A. We shall assume the figure to be a square.

2) The Homogeneous Poisson Assumption: An elemen-
tal area ds contains at most one node. The probabil-
ity of this node’s existence is Dds, where D is the
density of nodes in the plane.

3) Each node is able to communicate with any other
node that is at most R units distant from it.

4) 7R?< A.

5) All nodes generate Poisson streams of traffic at an
identical rate.

Under these assumptions, with the further restriction
that the medium access protocol be slotted Aloha, a num-
ber of authors [3], {6], [11] have shown that for the
throughput to be maximized, we must have wR’D ~ 6,
leading to the widely held belief that six is a “magic
number.” In this paper it will be shown that if 7R2D is a
fixed constant, then for sufficiently large A the network
will almost surely be disconnected, implying that no magic
number can exist. This, however, does not render the
notion of a magic number useless. A large square is well
approximated by the infinite XY plane, and Gilbert [1] has
shown that there is a critical number N, such that if
aR2D > N,, the random plane network contains an infinite
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connected component with nonzero probability. He found
N, to be bounded between 1.64 and 17.9. More recently,
Kirkwood and Wayne [5] and Hall [2] have shown that
2.186 < N, <10.588. We shall tighten these bounds to
2.195 < N, <10.526. Returning to the finite area A4, we
would expect the vast majority of nodes to be contained in
a single giant component if 7R2D > N,. Gilbert ran simu-
lations to verify this, and found it to be true in practice. In
addition, he estimated the true value of N, to be about 3.2.

The paper is organized as follows. In Section II we
determine the necessary and sufficient conditions for the
plane to be covered (i.e., for every point in the square to lie
at a distance of R or less from some Poisson point). In
Section III we present a necessary condition for the Pois-
son points to be connected. In Section IV Gilbert’s prob-
lem [1] is re-examined, and its relation to the packet radio
model is explored.

II. COVERING THE PLANE

First, we consider the problem of covering an area with
randomly located circles. Consider a square of area A in
which points are generated by a two-dimensional Poisson
point process of density D points per unit area. Each
Poisson point is assumed to cover all points lying within a
radius R of it. The question posed is the following: given a
functional form for R that may depend on D and A4, find
lim , _,  Pr[square is covered].
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Fig. 2. Covering the plane: square grid.

If we consider the Poisson points to be base stations or
repeaters in a packet radio network, the circle of radius R
would define the transmitting or receiving range of the
station. Clearly, if the square is covered, every point in it
will have access to at least one station.

Theorem 1: For any ¢>0, if R=/(1—¢)lnA/7D,

then lim , _,  Pr[square covered] = 0.

Proof: On the square of area A, construct a square
lattice of side 2R containing [(Y4 /2R)|? points as shown
in Fig. 2. The lattice is drawn so that it is centered over
region 1. Then if VA is a multiple of 2R, its outermost
rows will lie on the boundary between regions 1 and 2, and
if not, the lattice points will be contained entirely within
region 1. If the plane is to be covered, every lattice point
must be covered. For a lattice point to be covered, a
Poisson point must lie within a circle of radius R centered
at the lattice point. Therefore, in region 1 (refer to Fig. 2)
we can write

Pr [a specified lattice point is covered] =1— ¢ "®*D,

Let ¥ be a random variable that counts the number of
uncovered lattice points. Then

R 2
Pr[Y:O]:(l_eg,,RZD)l(ﬁﬂ )

A(
=(1+ o(l))exp(— 4_R2)
=o(1). (1)

It follows that in the limit as 4 — oo, the square is almost
surely not covered.

Theorem 2: For any € > 0, if

1+¢)ln4
DYy
7D

then lim , _,  Pr{squared covered] =1.

Proof: Fix € <0.5, and tile the plane with squares of
side €R /4v2 . The tiles adjacent to the boundaries may be
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smaller, though this is inconsequential. Clearly, the plane
is covered if and only if each of these tiles is covered. For a
tile to be covered it is sufficient that one or more Poisson
points lie in a circle of radius (1— (¢ /4)) R centered at the
center of each tile. The expectation of the number of
uncovered tiles is easily shown to be

O(A‘(‘/“)J'(‘Z/Z)). ()

The predominant contribution to the expectation comes
from Region 2. For ¢ < 0.5, this quantity is o(1), and as
the probability that a nonnegative integer random variable
exceeds 0 is upper-bounded by its expectation [8, pp.
10-11], the probability that one or more tiles is uncovered
— 0 as 4 — oo. The truth of the theorem follows from the
observation that the probability of the plane being covered
is an increasing function of .

Observation: To guarantee that the area is covered, a
node must have 7[(1+ €)In A /7D]D or a little more than
In A nearest neighbors (Poisson points that lie at a dis-
tance of R or less from it) on the average.

III. CoNNECTIVITY

Once again consider our square of area A4 in which
points or repeaters are generated by a two-dimensional
Poisson point process of density D. Each point is assumed
to be connected to all points at a distance of R or less
from it. If the Poisson points represent repeaters, and if
the network is connected, a transmitter that lies within the
range of a repeater can communicate with a receiver
located within the range of any other repeater, and this
points to a simple way to ensure radio coverage of a
region. If, on the other hand, the Poisson points are
thought of as transceivers, as in a mobile radio network,
the connectedness of the network allows communication
between any pair of transceivers. Once again, given a
functional form for R that may depend on D and A, we
investigate the behavior of lim,_,  Pr[network is con-
nected).

Though connectivity and coverage are independent—
neither implies the other—intuitively one would expect the
two properties to have very similar thresholds. A simple
argument to justify this assertion goes as follows. Suppose
first that R=/(1—¢€)Iln A/7D. Then the expectation of
the uncovered area is O(A4¢) which — oo as 4— oo,
and one would expect an uncovered patch to separate
two components in the graph. Likewise, if R
={(1+¢)In 4 /7D, the square is almost surely covered,
implying that the Poisson points lie very “close” to each
other. We therefore expect the probability of the network
being connected to be very high. This heuristic argument is
put on a firmer footing in the next theorem.

Theorem 3: For any €>0, if R=y(1—¢)lnd/xD,
then lim , _,  Pr[network is connected] = 0.

Proof: Referring to Fig. 1, if a single node that lies in
region 1 is isolated, the network is not connected. To show
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that an isolated node exists with high probability, we
proceed as follows.

1) Find the first two moments of the number of iso-
lated nodes.

2) Use Chebyshev’s inequality to show that the proba-
bility of finding an isolated node —1 as 4 — c0.

Let X be a random variable that counts the number of
isolated nodes in region 1. Then

Pr [a specified node is isolated] = e~ "X'P

and
E[X]= (/4 —2R)’De "F’2.
If R=/(1—¢)lnA/nD, we have

E[X]= (V4 —2R) De 4=
=(1-0(1))DA". (4)

The expected number of isolated nodes grows without
bound as A is increased. To find the second moment,
define indicator random variables {x;}, i>1, such that
x,=1if the ith node is isolated, and O if it is not. Then
X=X,x; and

- E[X2]=E[Zi:xiz+ Zx,-xj]

=E[X]+(1+0(1))E*[X],

provided that #R?D > (1+€)In 4.

In the last step we use the fact that x, = x? to conclude
that the first term is E[X]. To see that the second term is
(1+ o(1))E?[ X, first evaluate it conditioned on the exis-
tence of exactly m points, and then remove the condition
using the fact that the number of nodes in region 1 is a
Poisson random variable. Finally, use the condition on
aR?D to conclude that the subdominant terms are o(1)
with respect to the dominant term. Using a variation of
Chebyshev’s inequality [8, p. 138], we get

E[X?]- E*[X]

(5)

Pr[X=0] <

It follows that the probability of the graph being con-
nected also goes to 0 as 4 — oo.

Corollary: There can be no magic number, as the ex-
pected number of nearest neighbors needed to ensure
connectivity grows logarithmically with the area of the
square in which the points lie.

We conjecture, but cannot prove, that if

. R=J(1+€)In4d/7D,e>0,

the graph is almost surely connected. The conjecture is

based on the observation that if R=\/(1+¢€)lnA/7D the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 35, NO. 5, SEPTEMBER 1989

square is almost surely covered, implying that the Poisson
points lie very close to each other.

IV. THE INFINITE COMPONENT

As indicated in the corollary to Theorem 3, no magic
number can exist. In this section we explore the properties
of random plane networks of low density and use them to
conclude that the concept of a magic number is useful in
practice. Gilbert [1] showed that if the Poisson process was
assumed to generate points over the entire XY plane and if
the average number of nearest neighbors of a point ex-
ceeded some fixed constant N,, an infinite component
would exist with nonzero probability. He found 1.64 < N,
<17.9. (Due to a typographical error, the lower bound on
N, in [1] is given as 1.75.) More recently, Kirkwood and
Wayne [5] and Hall [2] have shown that 2.186 < N, <
10.588. Note that the existence of an infinite component
does not imply that all the nodes are connected. There
will, by Theorem 3, be infinitely many isolated nodes.
When the area of the square is finite, no infinite compo-
nent can exist, though we might reasonably expect most of
the nodes to belong to a giant component. Gilbert carried
out simulations and found this to be true in practice. From
the simulation, he concluded that Ny~ 3.2. It has been
conjectured that the true value of Nj is 7, though no proof
of this has been found. The following theorem due to
Robbins [10] now proves useful.

Theorem 4: Let S be a random Lebesgue measurable
subset of R, with measure p(S). For any point x € R, let
p(x)=Pr[x € S]. Define

g(x.5) = {4

Then assuming that the function g(x,S) is a measurable
function of the pair (x, ), the expectation of the measure
of S is given by the Lebesgue integral of the function p(x)
over R,.

Consider a random plane network generated so that the
average number of nearest neighbors of a randomly chosen
node is six. By Robbins theorem, the fraction of the square
that is uncovered is approximately e~ and the fraction
that is singly covered is about 6e~%. Together, they ac-
count for less than 1.75 percent of the area of the square.
It is reasonable to expect much of the singly covered area
to be composed of isolated nodes and portions of the
boundary of the giant component (assuming that N, <6).
If the portion of the singly covered area that consists of
isolated nodes is erased, the remaining portion should not
differ appreciably from our model of a two-dimensional
Poisson point process of density D points/unit area. In
addition, as the uncovered and singly covered area is a
small fraction of the total area, the giant component would
tend to cover most of the plane. These facts taken together
explain the generally good agreement between theory and
simulation reported in [3].

Finally we present, without proof, two theorems that
provide tighter bounds on N, than those found in [2]. To

ifxes
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lower bound N, we relate this problem to a multiclass
M/D/1 queue. Instability in the queueing system corre-
sponds to the existence of an infinite component. The
upper bound is proved by considering a percolation pro-
cess on a triangular lattice. The existence of an infinite
chain in the lattice implies the existence of an infinite

component in the plane. The interested reader is referred
to [9].

Theorem 5: N,>2.195.
Theorem 6: N, <10.526.

V. CONCLUSION

A model of a packet radio network has been examined,
and it has been shown that no optimal number of nearest
neighbors or “magic number” can exist. The notion of a
magic number has been shown to be useful, however, and
an explanation for the generally good agreement between
theory and simulation has been presented. A number of
open questions remain. The single most important one
concerns the homogeneity assumption made about the
Poisson process. Extending these results to the inhomoge-
neous case will mark an important step forward. Another
assumption that bears investigation is that of each node
being connected to all nodes that lie within a circle of
radius R around it. Certainly, this is not valid in many
environments of interest. These questions are significantly
more difficult to resolve than those examined in this paper.
We do, however, conjecture that the following hold.
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Conjecture 1: The conditions for connectivity and cover-
age are insensitive to the shape of the region that a Poisson
point covers. This may not be unduly difficult for convex
figures (such as the circle considered in this paper).

Conjecture 2: If the Poisson process is nonhomoge-
neous, then the “radius of influence” around each node
that is needed to guarantee almost sure connectivity and
almost sure coverage will be such that its expected number
of nearest neighbors is > (1+ ¢)In 4.
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