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Abstract

In this paper we provide a new method to estimate the performance of two traffic streams which
access a finite buffer using complete sharing, and share the capacity using the Generalized Proces-
sor Sharing scheduling policy. The input traffic is modeled by general Markov Modulated Fluid
(MMF) sources. Specifically, approximate steady-state probability distributions for the content
of the two logical queues are obtained and used to provide estimates of the loss probability and
delay distribution of each session. Qur approach is based on obtaining an initial estimate of the
distributions in the region where the buffer and capacity resources are specifically allocated to each
priority class and then refining this approximation by analyzing the effects on the boundaries. The
techniques used can be applied to the infinite and finite queue cases, by using the appropriate
boundary conditions in each case. This approach can be applied to service priority systems with
GPS scheduling and admission policies assigning buffer space priority when the shared buffer is
full. In this work we focus on the complete buffer sharing policy. We then show by means of
examples that current call admission control methods can be greatly improved when using such
priority schemes. '
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1 Introduction

The main objective in the future broadband integrated services network is the accommodation of a
variety of services with different traffic characteristics and Quality of Service (QoS) requirements.
This indicates that the network should provide special mechanisms in order to prioritize the access
to resources, such as link capacity and buffer space. The allocation of resources is controlled using
mechanisms such as call admission and policing, at the user-network interface, and scheduling at
network nodes. For services with strict loss and/or delay requirements upon call admission the
network must be able to reserve resources to guarantee the QoS of those services. As a general
example, traditional data traffic (file transfer, e-mail) has strict loss requirement but is relatively
insensitive to delay, while real-time traffic (video, voice) can tolerate some loss at the expense of
strict delay requirements. Network nodes (switches, routers, etc) are being designed to accomodate
at least these two types of priority classes. Most of the broadband switch architectures that have
been proposed in the literature use some buffering to queue cells contending for the same switch
output port. In a typical output buffered switch port, several traffic streams with different QoS
requirements access a shared buffer according to a space priority scheme and bandwidth is shared
using a scheduling algorithm. Currently, numerous packet scheduling algorithms used in high-speed
switches aim at approximating the Generalized Processor Sharing (GPS) policy.

Generalized Processor Sharing (GPS) is a work conserving scheduling discipline in the which
the n input sessions share a deterministic server with total rate c. A set of parameters {@;}1<i<a,
called the GPS assignment, determine the share of service rate that each session receives as follows:

Py

the minimum service rate guaranteed to input session ¢ is equal to ¢; = SRR Also, the input

j=1%7
traffic of session ¢ is considered an infinitely divisible fluid that can be described by a continuous
stochastic process r;(t). Thus, GPS can be considered a continuous limiting case of the Weighted
Round Robin service discipline.

Most previous work on GPS analysis is mainly focused on very general arrival processes, with
deterministic or stochastic settings. In [I, 2] the input process is described by Cruz’s Linear
Bounded Arrival Process (LBAP) model [3] with two parameters, a rate p and a maximum burst
size 0; at any time interval ¢ the source traffic is bounded by pt + o. In [4, 5] the source traffic is
modelled by the Exponentially Bounded Burstiness (EBB) process [6]. Under both traffic model
assumptions upper bounds on backlog and delay tail distributions are obtained. These results are
general and are expected to give loose upper bounds of the distributions, because the dynamics of
the arrival processes are not captured.

In [7] the sources are described by Markov Modulated Fluid Processes (MMFP), first introduced
as network traflic sources in [10]. This source model has been shown to effectively model network

traffic sources [8, 13]. The lower and upper bounds obtained in [7] for a two-queue GPS system,




are based on the approximation of the output process of a constant service queue fed by a MMFP,
using spectral decomposition techniques first introduced in [11]. This approximation is based on
an infinite buffer assumption and is not guaranteed to adequately model finite GPS buffer systems.

The contribution of this work is the development of an analytical method for a GPS system
with both infinite and finite queue. We consider that the input traffic consists of two priority
classes for simplicity. Analytical results provide a better understanding of the tradeoffs involved in
sharing both buffer space and service capacity among sessions of a statistical multiplexer in work
conserving systems with the flexibility and economy of bandwidth assignment that GPS offers. We
are also able to evaluate the advantage of resource sharing in call admission control. The usual call
admission control methods assume a fixed effective bandwidth for each source they are expected to
be conservative (see the survey in [14] and the references therein). We show that for buffer regions
of interest there is a significant margin for improvement, when a shared buffer GPS system is used.
The analysis of the bounded buffer case assumes complete sharing of the buffer space between the
two priority classes. However, with some additional effort, we believe that results can be extended
to a larger class of buffer management schemes that control the space priority of the two traffic
classes when the buffer is full. The case of multiple priority classes is an interesting open problem,
under the MMF source traffic assumption.

The paper is organized as follows. In section 1 we formulate the problem and list the basic
assumptions with two input multistate MMF sources with different QoS requirements sharing a
buffer and using the GPS service policy. The general GPS scheduling problem with a finite queue
is described in section 2. In section 3 we formulate the equations that describe the dynamics of the
system and accordingly provide an approximate solution for the queue occupancy distribution for
both the infinite and finite buffer case. In section 4 we compare analytical results with simulations.
Additionaly, to demonstrate the significant improvement in the capacity assignment of admission
control methods, we compare the capacity requirement of the shared buffer GPS system, with the
minimum capacity required by a fixed capacity allocation system. Section 5 contains conclusions

and future work.

2 The General Model.

The problem formulation of buffer management using the GPS service policy can be described
by the random processes of the input traffic streams, and the minimum capacity allocated to each
of the logical queues in the buffer (GPS assignment). We consider two traffic streams each treated
as a separate traffic class sharing a buffer of size B. Assume a time interval that one queue is
empty and its instantaneous input rate is less than its guaranteed minimum service rate. During

this time interval the other queue is assigned the residual service rate of the former queue in addi-
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Figure 1: Bounded buffer with GPS service.

tion to its own guaranteed minimum service rate. The following modeling assumptions are made.

There are two input traffic streams described by the processes ry(t), ro(¢) (see fig. 1), which in
this work are two independent general Markov Modulated Fluid (MMF) sources characterized by
the generator matrix A and rate matrix A for input r(¢), and the corresponding matrices B, M

for input ro(t), where

[ —an Ara Q1N ] [ —byy big -+ blN2 1
az1 —Qp **° AN, ba1 —byy - b2N2
A = , B = ) ,
L N1 aN12 e _aN1N1 A . bN21 bN22 e _bN2N2 A
A= dia’g{)‘la /\2> Tty )‘Nx}a M = dia’g{ula M2y, ﬂNz}'

In the above, the assumption is made that traffic source 1 (2) has N; (N;) states. Also, ); is
the arrival rate when the source 1 rate process is in state S1(¢) = [, and p,, is the arrival rate
when the source 2 rate process is in state S3(¢t) = m. The combined total arrival rate of the two
sessions can be described by a global K-state MMF process (K = N;N;) whose state at time ¢ is
S@t) ¥ (Si(t), Sa(t)) € G, where G = {(i,5) 14 = 0,1,..., Ny — 1;5 = 0,1,2, ..., Ny — 1}. The set
of pairs in G are ordered lexicographically. Let k = S(¢) = (i,7), where k € {1,..., K}, denote the
k-th ordered pair on G. The the stationary probability distribution of process r;(%) is denoted by

the column vector m;, where
R P T = 1.9 1
Ty = [7rzla7rz27 ""7r'LN.‘] ) ¢t =1,z ( )

Then, AT7y = 0, and BT 7, = 0, where the superscript T' denotes the transpose of a matrix. The
generator matrix G and the stationary vector probability vector 7 of the global system arrival

process are respectively given by,

G:ATGBBT, and 7 = m; ® Ta. (2)
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The operators “®”,“®” denote the Kronecker product and sum, respectively. The total system
has an output server of rate c. The minimum guaranteed service fraction for class 1 is a, and for
class 2 is 1-a. The transmission capacity allocated to each of the two traffic streams is described
by the processes Cy(t) and Cy(t) where

. C, lezt =0 _ C, 1fX1 t)=O
Gi(t) = { a = ac, if ngtg >0’ Calt) = { e =(l-a)e, if Xlgt) >0 (3)

By Xi(t) we denote the content of class 7 logical queue at time ¢, and by ¢; the minimum guaranteed
service rate for class i, where i = {1,2}. The instantaneous drift rate for the content of logical
queue ¢ is given by d;(t) = dX;(¢)/dt, where

%Xl(t) = r1(t) = {ac+ [(1 - a)e — ra(®)]* Liygmay} for Xa(t) > 0
%Xz(t) = ra(t) = {(1 = a)e + [ae— (O] L xumor}, for Xa() > 0, (4)

where ” 1{}” is the indicator function, and (z — y)* = max{z — y,0}. Each of the drift equations
(2) includes two cases depending on the buffer content of the other queue. Table 1 contains all

four cases.

Queue Condition Drift at source state (i,])
1 0<Xi(t) and Xp(t) =0 | di(z,5) = N + ps — c
1 0< Xl(t) and Xz(t) >0 dl(Z,]) = )\z —
2 0< Xg(t) and Xl(t) =0 dz(Z,]) = )\2 + MHj —C
2 0 < X(t) and X;(¢) > 0| do(3,5) = pj — co

Table 1: Drift Cases

In the general model of fig.(1) the buffer is finite, which raises the issue of buffer space allocation
between the two traffic classes. A discarding policy can be used in order to prioritize access to
the buffer, when it is full. In this work we assume a complete sharing buffer access policy. Both
session’s customers are dropped when the shared queue is full upon their arrival. Observe also that
in the asymptotic case, i.e. as B — oo, the problem reduces to that of two separate buffers or

logical queues, one for each input stream, which share the available service capacity according to
the GPS scheme.




3 System Equations

We next derive the differential equations that govern the dynamics of the system. Define first the

joint probability distribution functions
Pl (t,x1,22) = Pr{S(t) = (2,5); Xa(t) < 21, Xa(t) < 29,1}, 21 > 0,25 > 0, (5)

where S(t) denotes the global source state of the two independent arrival processes ry(t), ra(t).
For example, in the simple case of two-state MMF sources (on-off sources) ry(t), r2(t) can be in
one of two states 0 or 1, i.e. for any t, ri(t),r2(t) € {0,1}, and S(¢t) = (ri(t),r2(t)) € G =
{(0,0),(0,1),(1,0),(1,1)}. Since the drift rates of X;(t) and Xy(t) change on the boundaries
zo = 0 and z; = 0, respectively, (see table 1), we also need to define separately the joint pdf-s

restricted on and beyond those boundaries as follows:

For Xi(t),
PIO(t,21) = Pr{S(t) = (3, 5); X1(t) < 1, Xa(t) = 0,1}, 21 2 0, (6)
PR (t,21) = Pr{S(t) = (i,5); X1(t) < 21, Xa(t) > 0,1}, 21 > 0, (7)
and for X,(t),
P2t 22) = Pr{S(t) = (5,); Xa(t) < 23, Xa(t) = 0,1},25 2 0, (®)
P2 (t,22) = Pr{S(t) = (1,5); Xa(t) < 23, Xa(t) > 0,¢},22 2 0, (9)

where in the superscript of P*, k denotes the queue content that is variable in the restricted joint
pdf, and [ is either 0, if the restricted queue is equal to 0, or 1, if the restricted queue is greater
than 0. Define at steady state,

Fg = tli_géo Pg(t,ml,mg), for all superscripts S in definitions (5)-(9). (10)

In the area W of fig.(2)), 1 > 0, z2 > 0 (the area W is infinite as B — o0), the queues do
not interact, since each queue receives only its minimum guaranteed service rate. In this case the

system is described by a system of partial differential equations (pde-s), which can be derived as
in [9]. Let ’

Fw(wla $2) = [F(‘))‘(;(wla $2), Fg‘{(wla 332), eeey Fgl(lqu)(IEl, .'B2), ceey
F Ny —1)00 -+ F N1y (15 22), F{Rg -1y v, -1 (€1, 22)]T-
Then, the pde system is the following:

6FW($17$2)
8561

6FW(%, $2)

aw = (AT &b BT)FW(CChCEz),ml > 0,332 > O, (11)
2

A1 @]] + [I® Ay)



where Aq, A, are the diagonal drift matrices defined as,
Al =A—- 611, Ag =M — C2I, (12)

I is the identity matrix appropriately dimensioned for each case. We next consider the restricted
joint distributions F’(z1), F*(z2). Along each of the boundaries z; = 0 and z; = 0 (see fig. (2)),
the logical queues 2 and 1, respectively, receive full service. Along the boundary z; = 0 we must
not consider source states (¢,7) in which p; > ¢, since in those states X,(t) cannot be zero.
Therefore, we need only consider the state space of the underflow states of session 2, denoted by
Uy = {(4,5) : p; < c2}. Similarly, along the boundary 1 = 0 we need only consider the underflow
states of session 1, i.e. the set Uy = {(¢,7) : M < e1}. The difference equations that describe the

system along the z; axis for 1 > 0 are,
Piljo(t + 6t, SL‘1) = (1 — au)(l — bu)Piljo(t, Ty - ()\Z — cl)ét))
+ Z PI}O(t, wl)aliét(l — bjjét) -+ Z ]‘71-1,90(14,, .’131)(1 - ai,-5t)bkj5t
I#i k#j
+ (1 —ay)(l— b”)Pigv(t,:vl,O < Xo(t) < Ca(X1)6t) (13)

The last additive term in eq.(13) represents the system transitions from the strip S in fig.(2) to
the boundary z, = 0. By rearranging terms, dividing by 6t and passing to the limits 6t — 0,
and ¢ — oo we obtain a system of ordinary differential equations (ode-s) for the equilibrium
distributions F}%(z;) = tEr)réoPiljo(t,wl), (¢,5) € Uy,

d
(N — C)g;ﬂlj'o(wl) = —(ai + bjj) Fif (1) + Y auFi’(e1) + 3 b Fiy (1)
1 I#£4 k#j
. PZ‘J’V(:cl,O < Xz(t) S Cg(Xl)(St)
+ lim
6t—0 6t

(14)

Note that the additive terms on the right side of (14) require the solution of (11), which in turn is
bounded by the z;-axis on which (14) holds. As an example, in the case of two-state MMF sources

for both input streams, (14) becomes,

(~C)aﬁ-;F&é’(:v1) = _(al + bl)FOlf?(xl) + G2F11(§)($1) + 6%imopovg(w1’0<X2($(:)SC2(X1)dt)
(15)
= ) Fif(e) = aFg(en) — (az + bi) Fig(en) + Jim BECLOEIOON

A similar system of ode-s holds along the zy = 0 boundary. The overall queueing system solution

requires solving the pde system (11), using as boundary conditions the ode system (15) on the
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Figure 2: Derivation of system equations.

z3 = 0 line, and the corresponding ode system on the z; = 0 line, as well as boundary conditions
at (0,0) and either at infinity for the infinite queue system or on the boundary D, where 142, = B,
for the finite queue system. The exact closed-form solution of (11) is difficult to obtain because of
the its form, as well as because of its coupling with the boundary systems of ode-s. In the next
section we describe a technique to approximate the system solution, that can be applied to the

infinite and finite queue assumption, by applying appropriate boundary conditions in each case.

3.1 Solution of Joint Distribution in the Area W

As a first step, we proceed with an approximate solution of the problem in area W, with an
initial assumption that in this area the variables X (t) and X,(¢) are independent and their joint

distribution can be expressed as,
F" (21,22) = FY' (21) @ F} (1), (16)

where F;(2;) is the steady state vector distribution function of X;(t), 7 € {1,2}. This approximate
joint distribution is expected to become more accurate for large B, and is only used to derive an
estimate of the additive limiting terms in (14). In a second step of the analysis, in which the

interaction between X;(t) and X,(t) is explicitely taken into account, this system is solved to
obtain F°(z;), that is the distribution of X;(¢) along the line z; = 0. Similarly, we can obtain

F?°(z,). To determine F}”(z;) we observe that the two independent systems can be characterized
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by the two sets of ode-s (see also [10]),
Ar2F] = AFY, Ay2F) =BF;, (17)

where the matrices A, B, Ay, Ay were defined in section 2. The solution of (17) is obtained by
first extracting the eigenpairs (v, @) and (g, ) of the corresponding eigensystems

vAi1p = Ap, plAzp =By - (18)

Then the solution of eqs. (17) has the form

FW .'L'l Za eumxltpmn ;}V(w2) == Zbkeﬂk$2¢k, (19)
k

where vp,, jix are eigenvalues, @,,, ¥, are the corresponding eigenvectors, and a,,, by, are coefficients
to be determined from the boundary conditions at 0 and either co in the infinite buffer case, or
along the boundary D in the finite buffer case. Therefore the joint pdf in (16) can be further

expressed as:

FW (21, 25) ZZa ke e (p,, @ 1hy). (20)

In (20) we represent the product terms ambi of (19) by k. In the infinite buffer case boundary
conditions for the two logical queues can be independently applied to each one’s distribution in
(19), since the system is equivalent to one of two independent queues with no boundary [10]. In the
finite buffer case the joint distribution is normalized in the triangular area defined by the points
(0,0),(0, B), and (B,0), as in [9]. Next, consider the limiting additive terms in both equations of
system (15), which can be written as,

Vo, 20,

Jim EZPZV(X‘( ) < 21,0 < Xa(t) < Ca(Xn)6t) (21)

= lim %[P (X2(£) < 0,0 < Xy (t) < c8t) + P (0 < Xu(t) < 21,0 < Xa(t) < ca6t)] (22)

FY¥(0,cbt) — FY(0,0) FY (21, ¢36t) — FlY (21,0)

= | 5 I+ Jim| 5 1
FY(0,c6t) — FY(0,0)
_ . 15 ’ 13 ’
Sim | 5 B (23)

where (23) results by applying the properties of joint distribution functions on (22). From (20) the

components of FW(wl, Ty) are

W(zy,25) =y > i ™ €2 pim . (24)
m
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We note that in the eigenvector components @in, ¥jx above, the first indices ¢ and j denote the

order of the component in the m-th and k-th eigenvector, respectively. Substituting (24) in (23)

we get:
Z Z amksoim"»/)jk(e“kcat _ 1) Z Z amk‘Pimd)jkeymm (6uk025t . 1)
m k . m k
6t}-r—+n0 ot + 6}1_{210 6t
Y3 cmkpimn(e"% — 1)
. m k
5}l—n}o ‘ 6t
= > amk@imPikiic + DN amkpimbike” ™ prce
m k m k
=N OmkPim ik inCa
™k
= 3N i PimPintirC2€ ™ + DY) mpPimbinn(c — c2)- (25)
m k m k
Define,
0;5(z1) = 0i5(z1) + kij, (26)

where 0;;(z1) is the first and k;; the second term on the right of (25), respectively.

3.2 Derivation of Boundary Distribution F'°(z;)

System (14) can now be re-written in the following matrix form:

d A
D1 EF“’(%Q = G*Flo(ml) + @(51?1), (27)

where D1 is the diagonal drift matrix with diagonal elements
Dl(ivj):)‘i+/"j—c7 (i?j)€U2’ (28)

G is the global source generator, and the superscript * denotes deletion of rows and columns in
the original matrix that correspond to states that do not belong in Uz, the set of underflow source
states of the MMF source of session 2, Accordingly the vector F'°(2;) in this system does not
include the components corresponding to states (z,7) ¢ Us, since those components are equal to
zero. The additive vector @(z1) has components §;;(z1), for (i,7) ¢ Us, as defined in (26). The
system (27) is a nonhomogeneous linear ode system. To solve we first transform the ode system
to its canonical form. Let T be the matrix whose columns are the eigenvectors of D:'G*, and

define the transformation
F'=TY. (29)




By substituting for F10in (27) we obtain the transformed system in the canonical form
Y'(z1) = (T7'D17'G*T)Y (1) + (T7'D17)O(z1) = RY(21) + H(z1), (30)

where
R =T 'D;7!G*T, and H(z;) = T7'D;71O(z,) (31)

The matrix R is by construction diagonal with entries the eigenvalues of D1 ™' G*, so that (30) is

a system of uncoupled first order linear equations with solutions of the form

Yo = Co€ 7" 4 €70 /Ow1 e "% hy(z)de, (32)

where ¢, are coefficients to be derived from boundary conditions, r, are eigenvalues of D;'G*,

and h,(z;) the components of H(z). From the second definition of (31) hy(z1) can be expressed

as a linear combination of 6;;(z1), i.e.,

hd(wl) = Z‘Sauéu(wl)7 (33)

where 8, are the elements of T 'D;7! and we let the indices y, o, and [ denote the lexicographical

order of the global state indices (i,7) € U;. Furthermore, from transformation (29) we can obtain

the components F°(z;) of F10 as
Fllo(wl) = Z'rlaya, (34)

where 7, are the elements of T. Accordingly, substituting for y, and A,

Flw(f”l)

I

> mio{coe ™ + e /ag1 D 5¢,M9A,L(:1:)]d:c}
o 0 u
= Z CoTlo et + Z Z Tlaéauerawl uau(ml)a (35)

c c

where
a1 -Tal 0

uou(wn) = [ el (e)ds (36)

Using the definition of §,(z) from (26) we get

Ca

[e(m—ro)mr _ 1] (37)

utm(xl) = Zzamkﬂoum"%kﬂk
k

m VUp — To
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The first term on the right is the general solution of the homogeneous system (27) and the second

term is a particular solution. From eqgs. (35)-(37) we obtain the general solution

F(z) = Z CoTio€ " + Z Z Tloboplon(®1), (38)
o g p

where, T, are the eigenvectors of Dl'lG*, and

Upu(T1) = e " U (1)
c
= N tnkpimirpp———[e"™ = €77 (39)
m k Vp — 7o
The form of u,,(;) in (39) implies that by re-grouping the general solution (38) can be written
as, ‘
F110($1) = Z CoTio€ ™™ + Z Z Tla‘sauﬁau(xl)’ (40)
o o u
where
c
Co=Co— 3 Tiobop I O CmkPimPikih 2 (41)
© m Vm — To
and,
A c VmT
uau(wl) = Z E amksoim'(/)jk,u'k v _2_ € ! (42)
m [

mk

It remains to obtain the coefficients ¢, using boundary conditions.

3.3 Boundary Conditions for F'(z;)

L. Infinite buffer case
In (40) the coefficients ¢, from a linear system of equations that results by applying the conditions
at the boundaries z; = 0 and &1 = 0o. At the point 21 = 0 for all states such that the drift dy(7, j)

is positive, i.e. for all overflow states (i,7), the probability of empty queue 1 becomes zero:
F(zy =0)=0,Vle {l=(1,]) : da(4,5) > 0}. (43)

Also, we are looking for stable solutions of the system and therefore the coefficients of exponentials
with positive exponents must be set to zero. Since the eigenvalues vy, are either zero or negative,

for stability it must be true that

Vo€ {o:1, >0}, & =0. (44)
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By solving the system of equations (43) and (44) we extract the coefficients &,.

II. Finite buffer case

At z; = 0 the condition (43) remains. At z; = B the following condition is used:
Pr{l = (i,5) € Us,&1 < B, Xy =0} + Pr{l = (I, ) € Uy, queue 1 full, X; =0} =
Pr{S(t)=1=(:,7) € Uz, Xy = 0}. (45)

For source states that belong in the underflow set of source 1, queue 1 cannot be full, except at

isolated time instances, and using our previous definitions we obtain,
Vie {l = (Zaj) : d1(2,j) < O}a Flm(wl = B) = FIW($2 = O) (46)

By solving the system formed by the two conditions (that include as many equations as the number
system states in Uy, which is also the number of unknown coefficients), the coefficients ¢, can be

derived for the finite buffer case. This completes the derivation of F!°(z;), for both infinite and
finite buffer cases. Similarly we can obtain F2°(z;) &ef F(X; < z3,X; =0). In the next section we

describe the derivation of F%(z;) def F(X; < 21,X2 > 0) and the symmetrically defined F2(z,).

3.4 Derivation of Distribution F(z,)

We begin again by setting up the difference equations for the area 0 < zj, for the case that
X,(t) > 0. In this case, all source states S(t) € G are included. In this case there is no excitation
to the system and the general solution can be easily obtained. If we set up the system equations

we get the system in the following matrix form:

d
Dz—*FIZ(CCl) = GFIZ(.’El), (47)
d$1

where, the elements of the diagonal drift matrix D, are given by,
D@, j)=d~c1, k=(i,)) €, (48)

and G is the global source generator, which was previously obtained. The general solution of F}?
is,

Fi =Y sukie™™, (49)
1

where s;; is the 1¢th component of the [th eigenvector of D;'G, 2 is the corresponding eigenvalue,

and the coefficients k; are to be determined by boundary conditions.
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3.5 Boundary conditions for F'*(z;)

L Infinite buffer case

In (49) the unknown coefficients k; can be determined by a linear system of equations that results
by applying conditions at the boundaries #; = 0 and ; = co. There are conditions corresponding
to overflow states at z; = 0, one condition corresponding to the zero eigenvalue that contains the
results of F'%(z) at infinity, and conditions that correspond to the positive eigenvalues and impose

stability to the system solution.

At the point z; = 0, for all states such that the drift dy(z,7) is positive, i.e., for all overflow

states, the probability of empty queue 1 becomes zero:
F*(z, =0)=0,Yk € {k=(3,7) : du(4,5) > 0}. (50)

Also, to have stable system solutions, we must set the coefficients of exponential terms with positive
exponents equal to zero, i.e., k; = 0, for [ such that z = 0. Additionally, the term in the solution

that contains the zero eigenvalue is given by
Fl?(00) = P(X; < 00,X;>0)
= 7mu—P(X1 <00,X;=0)
=y~ F}*(c0), (51)
where | = (1,7) € G, m is the known global source distribution at state I = (4, 5), and F%(co)

can be found by taking the limit lim,, . in the solution of F'°(z;). By solving the system of
(50),(51) we can determine the coefficients k; in (49), which completes the solution of F'2(z,).

II. Finite buffer case.
At z; = 0 the condition (50) remains.

At z; = B the following condition is used:
Pr{l = (3,7) € G,21 < B, Xy > 0} + Pr{l = (1, j) € G, queue 1 full, X; > 0} =
Pr{l = (2,7) € G, X; > 0}. (52)

For source states that belong in the underflow set of source 1, queue 1 cannot be full, except at

isolated time instances, and using our previous definitions we obtain,
Vie{l=(i,7):di(,j) <0}, F'*(zy=B)=PF(Xz>0), or
Fi*(ay = B) = mi ~ (1 = B). (59)

By solving the system formed by the two conditions (that include as many equations as the number

system states in G, which is also the number of unknown coeflicients), the coeflicients k; can be

derived for the finite buffer case. The distribution F?!(z;) can be derived similarly.
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3.6 The Steady State Distributions and Performance Statistics

From the previous sections we have obtained F;°(z1), and F}?(z;). By applying the simple fact
that

PI‘{S(t) = Z,Xl(t) S £L'1} = PI‘{S(t) = l,Xl(t> S .’171,X2(t) = O}+Pr{5(t) = l,Xl(t) S .’E1,X2(t) > 0},
(54)
as t — oo we get the steady state distribution F(zy):

Fy(w1) = F{%(e1) + F*(21),¥1 = (i,5) € G. (55)

Similarly we can obtain the occupancy distribution of the second logical queue F(z2).

Once the steady state distribution for the content of each session in the shared buffer is deter-
mined, it is possible to obtain expressions for their throughput and loss probabilities. Let FY (y)
denote the steady state probability distribution function of the random variable Y = X + X,
at global system state k € G, i.e., the occupancy distribution of the total shared buffer content
irrespective of priority class. In the following we assume known the exact method to derive FY (y),
given a general MMF input source, the total server capacity c, and a finite buffer of size B (see for

example [12]). The throughput T} of session 1 is given by the following expression:

T, = (generation rate of session 1)-(loss rate of session 1) (56)
= D mEh = | | (57)
keg
> {[A — 1] " Pr{k, buffer full, X5 > 0} + [Xe + px — ]t Pr{k, buffer full, X, = 0}}(58)
keg
= Y muph — (59)
keg
S {[M = e]F[Pr{k, buffer full} — Pr{k, X; = B}] + M + i — ]t Pr{k, X1 = B}(60)
keg

In this expression for T} it is taken into account that the drift of session 1 depends on the content
of session 2. It is known that Pr{k, buffer full} = 7y — FY (B) and Pr{k, X1 = B} = my;,— [}°(B).
Substituting in the expression for 71 we obtain the throughput of session 1. The loss probability

L, of session 1 can then be simply derived as follows:

Ty

=1 —or—
! Cokeg Tk

(61)

In conventional fluid analysis, the distribution for the waiting time is readily obtained from the

distribution for the buffer content. However, in the model considered, this is not trivial since the
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service rate for a given session depends on the content of the other session’s logical queue. An

estimate of the distribution of delay seen by arriving cells of session 1 is,

Pr{delay <t} = —]—1;— S MFi(X1 < at), 0<t< Bfe, (62)
1 keg

where we conservatively assume that the service rate of session 1 remains at its minimum guaranteed
value ¢; upon cell arrival. We note however that the occupancy distribution in (62) is derived from
the previous analysis.

Similar expressions can be obtained for the throughput, loss probability and delay distribution of

session 2.

4 Numerical Results

In order to verify the accuracy of our approximation we conducted numerical results to compare
analysis with simulation for the tail distributions P;[X; > z;], 1 = 1,2 of the two sessions. Results
are included for both the infinite and finite shared buffer case. In all the simulation cases under
study the simulation run lengths were such that the 95% confidence interval of an estimated value
is within 20% of the value.

Although the analysis accounts for any number of multistate MMF sources in each of the two
different priority traffic streams, we use two-state sources for simplicity. Each input traffic stream
; consists of a two-state MMF source (on-off source) characterized by the state transition rates a;
and input rate ); (on state) for source 1, and b; and input rate y; (on state) for source 2. The
average duration of the on state is kept equal to 1in all cases, i.e. 1/as =1 /by = 1. The total server
capacity ¢ = 1. The GPS assignment is symmetrical, i.e., ¢; = ¢; = 0.5, in all but the last example.
We are mostly interested in obtaining results when traffic load approaches critical levels. In figures
(3) through (6) the overflow probability of both sessions is estimated and simulated with source
activity factors py = a1/(a1 +az), p2 = bi/(b1 + b2), respectively, where py = pa = 0.4. The on-state
rates are \; = py = 1.01, that corresponds to total system load u = 0.8 in all figures. Each graph
corresponds to a different GPS assignment (c1,c;) which defines the fraction of the total service
that each source receives. In fig. (3) ¢; = ¢z = 0.5 the GPS assignment is symmetrical, while in the
rest of the figures it is asymmetrical. Since the same sources are used in our examples, the effect
of assigning a different fraction of service to each source on the buffer occupancy is more apparent.
As more service is assigned to the first source the difference of the overflow probabilities of the
two sources increases. Although this is a simple qualitative fact the analysis can help quantify this
effect.

In figures (5) through (10) we used the same source parameter values with various GPS as-
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signments, this time for the case of a finite buffer with B = 10. To give some numerical intuition
we may equate the server capacity of one fluid unit per time unit to the standard OC-3 rate of
155 Mbps. By using a time unit of 0.27 msecs, one unit of fluid then corresponds to 100 ATM
cells, so B = 10 is equivalent to 1000 cells. In both cases the analytical results are higher than
the simulation results. Although this is not proven in general. it is intuitively expected since in
the first step of the analysis we assume independence of the two queue occupancy distributions
in order to obtain the excitation of the system equations on both the z; and z, axis. We intend
to investigate whether iterating on the values of the occupancy distributions in area W, using the

results for F(z4), F(z2) refines our approximation, as we expect.

4.1 A Comparative Study with a Fixed Capacity Allocation System

Using our analysis we can explicitly demonstrate the significant improvement in resource allocation
during admission control when using capacity scheduling with the GPS policy and shared buffering,
as compared to a segregated buffer system with fixed capacity assignment for each priority class.
We assume a scenario in which each source of the previous examples belongs to a traffic class with
different loss requirements, L; = 107% and L, = 1072, We then examine the minimum capac-
ity that satisfies the loss requirement for a wide range of buffer sizes in two buffer management
systems. In the first system each traffic stream ¢ uses a dedicated buffer of size B; and capacity
C;. To obtain the optimal capacity allocation for each overall system buffer size B, we solve the

minimization problem:

Minimize f(Cy,C;) = Cy + C;
Subject to: L1(C1,B1) = 10—6, Lg(Cz,Bz) = 10—3,
and By + B, = B.

For each value of B the optimization procedure finds the optimal buffer partitioning (By, B;) that
minimizes the overall capacity C.
In the second system we use GPS scheduling with assignment (¢1,¢2) and complete sharing of

a buffer of size B. For each overall system buffer size B we solve the minimization problem:

Minimize f(C)=C+cC =C
Subject to: Li;(Cy = ¢1C, B) = 1078, Ly(C; = ¢;,C, B) = 1073,

and ¢; +¢; = 1.
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In this case the optimization procedure finds the minimum required capacity C as well as the op-
timal GPS assignment (¢, c;). Comparative numerical results were obtained using Matlab library
functions for optimization and are illustrated in fig. (11). There are two optimal capacity-buffer
curves for fixed losses Ly and Ly, one for the segregated buffer/capacity system, and one for the
complete buffer sharing GPS system.

In both cases, as the buffer size increases less capacity is required to meet the loss requirements
of the two priority classes. For all buffer sizes the shared buffer GPS system requires less capacity.
Specifically, for buffer sizes from 500 to 2500 cells (B = 5 to 25) savings in capacity range from 70%
to 10%. This is a region of typical buffer sizes of interest, roughly covering the first quarter of the
zy-axis in fig. (11). Observe also that in this region the optimal curves are much steeper. However
the slope of the shared GPS system is smaller, which means that by reducing the available capacity
by some amount, much less additional buffer is needed for the shared GPS system to meet the loss
requirement, than in the segregated system. Alternatively, for any available capacity the shared
buffer GPS system can meet the loss requirements using a smaller buffer size. This is a tradeoff
that is useful in buffer sizing. The shared GPS system optimal curve also provides a means to
compare how different implementations of packetized GPS approach the continuous fluid analysis

performance.

5 Conclusions

In this paper, we studied the performance of sharing buffer space and link capacity between two
sessions, the traffic of which is modeled by two independent general MMF sources. For schedul-
ing we assumed the GPS policy, which guarantees a minimum capacity allocation to each session,
and thus allows for maintaining different quality of service, in terms of loss probability and de-
lay. Among admission policies assigning buffer space priority when the shared buffer is full, we
focus on complete buffer sharing. At a first step, our analytical approach obtains estimates that
approximate the occupancy distribution for the logical queue of each session. At a second step
we obtain refined estimates of the occupancy distributions by first obtaining expressions for the
constrained distributions on and inside the boundaries. Moreover, we obtain analytical results for
the throughput, loss probability and delay distribution. Case studies in traffic loads of interest
show that the analytical results closely approximate the results obtained by simulations and give
upper bounds. Although in this paper we focused on complete sharing of the buffer, the techniques
used can be extended to model other space priority policies that control access to the buffer when
it is full, such as push-out, combined with GPS scheduling. This class of mixed buffer space and
capacity policies conserve the network resources, and allow for flexibility in assigning loss and delay

priorities among different traffic classes.
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Finally, we compared the optimal capacity allocation for a wide range of buffer sizes, between
the system under analysis and a fixed capacity assignment segregated buffer multiplexer with the
same total buffer size. We observed considerable gain in the required capacity in the buffer size
regions of interest. Common call admission control methods assume a fixed effective capacity (or
bandwidth) allocation for the sake of its additive property and call set-up speed. Our results
indicate that there can be significant improvement in the capacity allocation to calls, by further
exploiting the multiplexing gain of shared buffers and GPS scheduling. Similar performance trends
are expected when more than two priority classes are present, which still remains an interesting

direction for future research.
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