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Abstract | Generalized Processor Sharing

(GPS) is an important scheduling discipline be-

cause it enables bandwidth sharing with work

conservation and traÆc isolation properties.

Although Markov Modulated Fluid Processes

(MMFP) captures the �ne dynamics of the

sources and is expected to give tight performance

bounds, the analysis of MMFP sources with a

GPS server is usually diÆcult because of the

large state space and the coupled services of the

classes. Matrix analytic methods [8], which yield

great numerical accuracy and stability, are e�ec-

tive alternatives to the spectral analysis approach

(e.g. [12]). In this paper, we apply Matrix An-

alytic methods for 
uid 
ows as introduced by

Ramaswami [11] to the analysis of GPS systems

fed by MMFP sources. We propose a new tech-

nique to calculate the tail distributions of the

classes where matrices processed are of smaller

sizes, which greatly reduces the computation com-

plexity. Numerical results illustrate the eÆciency

and accuracy of the technique. We also investi-

gate the Caudal Characteristics of GPS queues

which further illustrate the e�ectiveness of the

GPS scheduling discipline.

I. Introduction

The main objective for next generation networks is ac-

commodating a variety of services with di�erent traÆc

characterizations and Quality of Service (QoS) require-

ments. Scheduling is used in switches and routers to en-

force service di�erentiation. Among the scheduling disci-

plines, Generalized Processor Sharing (GPS), along with

its variants such as Weighted Round Robin, has such de-

sirable properties as bandwidth sharing with traÆc iso-
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lation, fairness provisioning, and service di�erentiation,

making it suitable for QoS provisioning.

GPS has been widely studied [1, 2, 3, 4]. Most pre-

vious work takes bounding approaches and focuses on

general arrival processes, with deterministic or stochas-

tic settings. GPS systems are studied with various

source characterizations, such as Poisson with symmet-

ric service sharing [1], leaky bucket regulated sources

[2], exponentially bounded burstiness sources [3], and

long-tailed sources [4]. By the notion of feasible order-
ing/partitioning, a GPS system can be reduced to a pri-

ority system and hence performance bounds are readily

obtained [2, 3]. A queue decomposition technique is pro-

posed in [3] to de-couple the service. These results are

generally expected to be loose since the �ner dynamics of

the sources are not exploited [5].

Matrix analytic methods, introduced by M. F. Neuts

[8] for the treatment of certain special two-dimensional

Markov chains, take advantage of the structural simplic-

ity of the embedded Markov chains and provide numeri-

cally stable approaches for the treatment of such systems.

There is a rich literature on matrix analytic methods, and

interested readers can refer to [9] for a review of the re-

cent developments. Sengupta [10] and Ramaswami [11]

showed that under certain assumptions, the steady state

probability distribution of a 
uid queue has a matrix-

exponential form which is a continuous analog of matrix

geometric methods. Ramaswami derived the technique of

analyzing the classical Markovian 
uid queueing model

[12] using matrix analytic methods [11]. By appealing to

the skip-free nature of 
uid queues and time reversibility

theory, the computation of the steady state distribution of

a 
uid queue fed by Markov Modulated Fluid Processes

(MMFP) is reduced to the analysis of a discrete time,

discrete state space quasi-birth-death (QBD) model. It

is shown in [11] that this approach yields great numerical

accuracy and stability.

In this paper we study a multiple-class GPS system

with classes modeled as MMFP. Markovian processes

have been widely used to model network traÆc and are

eÆcient in modeling Voice over IP traÆc [7, 13]. It is

well known that data traÆc is self-similar, which poses a

great challenge to network control and QoS provisioning.

Previous work show that Long Range Dependent traÆc,
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such as VBR video, can be adequately approximated by

Short Range Dependent traÆc models for traÆc engineer-
ing purposes [14, 15]. Furthermore, recent evidence shows

that aggregating web traÆc causes it to smooth out as

rapidly as Poisson traÆc [16]. These make it possible to

investigate certain aspects of the impact on the perfor-

mance of the long-range correlation structure within the

con�nes of traditional Markovian analysis [15].

We introduce an eÆcient technique for deriving the tail

distribution of a MMFP class in a multiple-class, in�nite

bu�er GPS system. In our previous work [6], we proposed

a tight service bound for a tagged queue in the system.

Applying this service bound, we �rst transform the GPS

system into a simpler deterministic service queue for the

tagged class; then matrix analytic methods is applied to

get the tail distribution for the tagged class. Compared

with spectral analysis, this method processes smaller ma-

trices of the order of the number of overload states or

underload states. There is also no need to solve the lin-

ear system of boundary conditions for coeÆcients. Lower

computation e�ort allows us to handle larger systems.

Also this method is less liable to the numerical problems

incurred in the classical spectral analysis [12] and yields

greater numerical accuracy [11]. Since the state space

increases exponentially with the number of sources, this

method is more e�ective for the QoS analysis of links car-

rying a moderate number of sources, such as access links

or Virtual Private Networks (VPN). For larger systems,

e�ective bandwidth based algorithms, e.g. [7, 19], are

recommended since they are relatively more scalable.

The rest of the paper is organized as follows: in Section

II the system model and the service bound are presented.

In Section III we review the analysis of stochastic 
uid


ow models with matrix analytic methods in [11] and

presents several useful extensions. Numerical results are

given in Section V. Section VI is the conclusions.

II. The GPS System with MMFP Sources

A. The System Model

GPS is a work conserving scheduling discipline in

which N traÆc classes share a deterministic server with

rate c [3]. There is a set of parameters !i, i = 1, : : :,

N , called GPS weights. Each class is guaranteed a ser-

vice rate gi = !ic, and the residual service of the non-

backlogged classes is distributed to the backlogged classes

in proportion to their weights.

The system is shown in Fig.1. Each class i, with instant

rate ri(t), is modeled as a MMFP with state space Si, rate
matrixRi, and in�nitesimal generatorTi. Ti governs the

transitions between the states and ri(t) = Ri(�i; �i) when

class i is in state �i at time t. Assume
P

i �i � c, which

guarantees the ergodicity of the system; and �i < gi,

i = 1, : : :, N , where �i is the average rate of class i. The

bu�er is in�nite. Each class has its own logical queue

with occupancy Xi(t).

We are interested in the tail distribution of class i's

queue occupancy, which upper bounds the loss class i

X1(t)

X2(t)

XN(t)

...

Nω

2ω
1ωr1(t)

r (t)2

rN(t)

C

...
...

Fig. 1: The system model

experiences in a �nite bu�er system and can also be used

to bound its delay distribution.

B. A Service Bound

In our previous work [6], we proposed a lower bound for

the service that a class receives in the GPS system (LMP

bound), which decouples the correlated GPS service as

shown in Fig.2.
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Fig. 2: The queue decomposition technique.

It takes two steps to obtain the LMP bound for the

tagged class i. First, the departure process of each class,

r
0

j(t), j 6= i, is approximated by assuming the service rate

is gj . The generator matrix of r
0

j(t) is T
0

j and the state

space of the departure process, S
0

j , consists of several un-

derload states and one overload state whose rate equals

to gj if gj is less than the peak rate of rj(t); otherwise

the departure process is identical to rj(t). The technique

in [17] is used to characterize the departure processes.

Secondly, class i's service rate, s
0

i(t), is the guaranteed

service rate gi increased by its share of the residual ser-

vice rate from all un-backlogged queues according to the

GPS weights of all backlogged classes as shown below.

s
0

i(t) � gi +
!i

!i +
P

k2B(t) !k

X
j2B(t)

(gj � r
0

j(t)): (1)

B(t) in (1) is the set of the backlogged queues, and B(t) is

the set of un-backlogged queues at time t. Logical queue

i's occupancy distribution can be derived from a queue

with input ri(t) and modulated service s
0

i(t) (both are

MMFPs).

It is proved in [6] that the LMP bound is an approx-

imate lower bound of the service class i receives, hence

the tail distribution obtained from (1) is an approximate

upper bound of class i's tail distribution. The tightness

of the LMP bound depends on how accurately the depar-

ture processes are modeled. In [17], it is argued that the
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output characterization of a FIFO queue with MMFP in-

put is accurate when the non-empty bu�er probability is

lower than 10�3, which is not atypical for real-time traÆc

with a stringent delay requirement. For such systems, we

believe the LMP bound can be reasonably tight for the

cases of interest.

C. Transform To A Deterministic Service Queue

In the previous section, we decomposed the GPS sys-

tem into a queue with modulated service. Next we make a

simple transform to change it into a deterministic service

queue.

The service bound in (1) can be expressed as:

s
0

i(t) = c
�

i � r
�

i (t) (2)

where r�i (t) =
c
P

k2B(t)
!k+!i

P
j 6=i

r
0

j(t)

!i+
P

k2B(t)
!k

, and c�i = gi + c.

Then the drift of logical queue i is:

d

dt
Xi(t) = ri(t) + r

�

i (t)� c
�

i

This is identical to the system equation of a deter-

ministic service queue with service rate c
�

i , and two

MMFP sources ri(t) and r
�

i (t), as illustrated in Fig.3.

The second source has rate r�i (t) and generator matrix

T�i = T
0

1 � : : : � T
0

k � : : : � T
0

N ; k 6= i, where � is the

Kronecker sum operator.

ri (t)

ri
*(t)

Xi (t)
Ci*

Fig. 3: The equivalent model

III. Matrix Analytic Methods for

Stochastic Fluid Flows

In [11], Ramaswami applied matrix analytic methods

to 
uid 
ow analysis. By appealing to the skip-free nature

of 
uid level 
uctuations and time reversibility theory, the

computation of the steady state distribution of a Markov


uid FIFO queue is reduced to the analysis of a discrete

time, discrete state space QBD model. Such QBD models

are well studied and many computational algorithms are

available in the literature for them. A very good reference

is [9]. In this section, we �rst review the main results in

[11], and then we derive three useful corrollaries.

A. Fluid Flow Analysis

Suppose the 
uid 
ow source is governed by a continu-

ous time, irreducible Markov process with state space f1,
: : :, m, m+1, : : :, m+ ng and in�nitesimal generator T.

The net rate of input to the in�nite bu�er is assumed to

be di > 0 when the Markov chain is in state i, i � m,

and dj < 0 when the system is in state j, j > m.

Let � = [�1;�2] be the steady state probability vec-

tor of the process, while �1 is of order m� 1 and �2 of

order n � 1. De�ne � = diag(�), ~T = ��1T0�, and

D =

�
D1 0

0 D2

�
, where D1 = diag(d1; d2; : : : ; dm) and

D2 = diag(dm+1; dm+2; : : : ; dm+n). Also let ~S = D�1 ~T

and partition ~S into ~S =

�
~S11 ~S12
~S21 ~S22

�
, where ~S11 is of

order m�m.

Theorem 1 [11]: The stationary distribution of the


uid 
ow is phase type with representation PH(�;U) of

order m, where � = �1 +�2W. The tail probability of

the queue distribution is given by:

G(x) = �eUx1; for x � 0. (3)

where

U = ~S11 + ~S12

Z
1

0

e
~S22y~S21e

Uy
dy (4)

and

W =

Z
1

0

e
~S22 ~S21e

Uy
dy: (5)

Choose a number � � maxi(�~Sii), and let M1 =

�
�1U+ I, ~Pii = �

�1~Sii + I, and ~Pij = �
�1~Sij , for i 6= j.

De�ne matrices

A2 =

�
~P11 0
1
2
~P21 0

�
;A1 =

�
0 ~P12

0 1
2
~P22

�
;A0 =

�
0 0

0 1
2I

�
:

(6)

Theorem 2 [11]: The rate matrix of the QBD de�ned

by (6) is given by:

G =

�
M1 0

W 0

�
: (7)

B. Computing The Rate Matrix

The G-matrix of the QBD de�ned by (6) is the solution

of a non-linear matrix equation, and can be found by

successive substitutions using (8) [8, 9].

Gn = (I�A1 �A0Gn�1)
�1A2 (8)

Note the matrices in (6) are quite sparse. Further exploit-

ing this fact and the special structure of the G matrix,

a new iteration scheme of computing M1 and W can be

designed as follows:

W = 1
2 (I�

1
2
~P22)

�1 ~P21;

do

Wold =W;

W = 1
2 (I�

1
2
~P22 �

1
2W

~P12)
�1(W ~P11 + ~P21);

until kW �Wold k1< ";

M1 = ~P11 + ~P12W;

output M1 and W.

This iteration scheme has the following convergence

property:

Corollary 1 : The iterative scheme proposed above

converges linearly.
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Proof: Plug in (6) and (7) into (8), we have

�
M1 0

W 0

�
=

�
I �~P12

� 1
2W I� 1

2
~P22

��1 � ~P11 0
1
2
~P21 0

�

=

�
~P11 + ~P12W 0
1
2 (I�

1
2
~P22 �

1
2W

~P12)
�1(W ~P11 + ~P21) 0

�
;

which gives:�
M1 = ~P11 + ~P12W

W = 1
2 (I�

1
2
~P22 �

1
2W

~P12)
�1(W ~P11 + ~P21)

Thus this algorithm is the same as the algorithm based

on (8) in [9] and they have the same linear convergence

characteristics.

The matrices used in this scheme are of the order of

m or n. Recall that m is the number of overload states

and n is the number of underload states. We process

smaller matrices here rather than directly calculating G

from the Ai's. Our experiments show that, for typical

cases, this scheme requires the same number of iterations

as the linear convergence algorithm in [9] and is about 10

times faster.

C. Caudal Characteristics of Fluid Queues

It is well known that if a QBD is positive recurrent then

its steady-state probability vector f�0;�1;�2; : : :g has

a matrix geometric form and decays geometrically with

rate �. Thus � essentially describes the tail behavior of

the model, and is called the Caudal Characteristics factor
of the QBD [18]. It is closely related to the asymptotic

decay rate, or the e�ective bandwidth in large deviation

theory [19]. Here we de�ne the Caudal Characteristics

factor for the 
uid queues.

Corollary 2 : The Caudal Characteristics factor of

the 
uid queue de�ned in Section III-A, �, is

� = MRE(U) = �(MRE(M1)� 1)

= �(MRE(G)� 1); (9)

where MRE(X) calculates the maximum real eigenvalue

of matrix X.

Proof: Assume  i and �i be the normalized left and

right eigenvectors of U with corresponding eigenvalues

�i, i = 1, : : :, m. Then

G(x) = �

2
4 �

0

1

: : :

�
0

m

3
5
0 2
4 e

�1x : : : 0

: : : : : : : : :

0 : : : e
�mx

3
5
2
4  1

: : :

 m

3
51

=

mX
i=1

< �; �i > e
�ix <  i;1 > :

Suppose � = maxif�ig and � is the kth eigenvalue of U.

When x gets large, the � term dominates.

G(x) '< �; �k > e
�x
<  k;1 > :

Tab. 1: On-o� Source parameters

- � � �

Type 1 0.40 1.00 1.00

Type 2 0.40 1.00 1.20

Type 3 1.00 1.00 0.61

Type 4 0.56 0.83 8.0

Thus � determins the tail behavior of the 
uid queue for

large bu�ers. From (7), it is obvious that M1 has the

same eigenvalues as G. From the de�nition of M1, the

relationship between its eigenvalues and that of U can be

derived.

For the discrete-time, discrete space QBD with rate

matrix G, algorithms are proposed in [18] to compute its

Caudal Characteristic factor, which is more interesting

when the order ofG is so large that an exact computation

of G, and therefore also of the exact tail distribution is

not feasible. If the phase space is decomposable, fast

algorithms are provided in [18].

Corollary 3 :Assume � is the kth eigenvalue of U. let

 k and �k denote the kth left and right eigenvectors of U.

When x gets large, the tail distribution of the 
uid queue

can be approximated by:

G(x) '< �; �k ><  k;1 > e
�x
; (10)

There are eÆcient methods to calculate the dominant

eigenpair of a matrix available in the matrix theory lit-

erature. Eq.(10) can be used for the cases where a fast

approximation is needed.

IV. Numerical Investigations

In this section we present some of the numerical results,

which illustrate the quantitative and qualitative aspects

of the technique.

In some of the experiments we have done, we use classes

of sources where each class is the aggregation of a number

of on-o� sources. These bursty sources are used in mod-

eling packet voice for traÆc engineering purposes [6, 13].

The source parameters are given in Table 1, where � and

� are the transition rates from o� to on, and from on

to o�, respectively; � is the rate when the source is on.

Although the classes considered here consist of homoge-

neous sources, the technique also applies to the cases

where a class consisting of heterogeneous sources. The

analysis results are compared with 
uid simulation with

95% con�dence intervals to verify their correctness.

Consider a 3-class GPS system where Class 1 has 10

Type 1 sources; class 2 has 10 Type 2 sources; and class

3 has 10 Type 3 sources. The service rate is c = 15:1,

while the GPS weights are !1 = 0:33, !2 = 0:40, and

!3 = 0:27, respectively. The system load is about 61%,

which is not atypical in traÆc engineering. Fig.4 shows

the tail distributions of the classes. It can be seen that
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Fig. 4: Tail distributions of a 3-queue GPS system

under this load our service bound (1) gives a good ap-

proximation. All three analysis curves match simulations

for the whole bu�er region. We also plot the analytic

results for the tail distributions of the classes using the

service bound in [5] (LZT bound) for comparison pur-

pose. Like the LMP bound, LZT bound also requires the

output characterization of all non-tagged classes and the

computing of all the eigenvalues and eigenvectors of the

derived system. The computation complexity of the LMP

bound and LZT bound are comparable. The LMP bound

results match the simulation more closely than that of

the LZT bound. As an example on the reduced matrix

sizes using this approach, for class 1, the derived equiva-

lent system, Fig.3, has 616 states, while the U matrix of

this system is of size 100�100.

To further illustrate the e�ectiveness of the technique,

we study a 3-queue GPS system with a video class and

two voice classes. The video model is from [14], in which a

four-state Discrete-time Markov Modulated Poisson Pro-

cess (DMMPP) is used to model video traÆc. A video

source has transition matrix T and rate vectorR as given

below. Note b�i = (1��i) and b�i = (1��i) in T. The pa-
rameters are matched from the MPEG-1 Star Warsmovie
in [14], and are given in Table 2. We use its 
uid equiv-

alent for the analysis and simulations. A voice source is

modeled using parameters of Type 4 in Table 1. Class 1

consists of 2 video sources, while class 2 and class 3 are

identical, consisting of 20 voice sources each. The GPS

weights for the classes are 0.54, 0.23, and 0.23, respec-

tively, and the service rate is 306.6. Fig.5 plots the tail

distributions of the classes. Again, the analysis results

match the simulation results closely for the whole bu�er

region. We also plot the tails of the classes using (10).

The approximations almost overlap with the exact analy-
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the voice classes(analysis)

dominant eig appro. of voice class
95% conf. Int.

Fig. 5: Tail distributions of a 3-queue GPS system,

where class 1 has two video sources and class

2 and 3 have 20 voice sources each

Tab. 2: Video Source parameters

�1 �2 �1 �2

0.0018 0.00064 0.1568 0.0234

�1 �2 �3 �4

95.24 58.9 73.92 37.58

sis except for small bu�er regions. The equivalent system

derived for class 1 has 1600 states, while the U matrix

obtained is of size of 14�14.

T =

2
6664
c�1c�2 c�1�2 �1c�2 �1�2c�1�2 c�1c�2 �1�2 �1

c�2
�1c�2 �1�2

c�1c�2 c�1�2
�1�2 �1

c�2 c�1�2 c�1c�2

3
7775

R =
�
�1 �2 �3 �4

�
Next we examine the Caudal Characteristics (� de�ned

in (9)) of the classes with a GPS server. In Fig.6, we plot

the Caudal Characteristic curve of class 1 in a 3-class

GPS system for four di�erent GPS weights. In the 3-

class GPS system, class 1 has two Type 1 sources, class

2 has two Type 2 sources, and class 3 has two Type 3

sources. In Fig.6, !1 increases from 1/5 to 1/2, while

!2 = !3 = 1
2 (1 � !1). The system load is varied from

0.35 to 1 by adjusting the service rate. Di�erent GPS

weights yield di�erent Caudal Characteristic curves. The

higher the GPS weight, the lower the �. This shows the

separation and protection features of GPS servers and
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allows for the selection of the right GPS weights to meet

QoS requirements.
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Fig. 6: Caudal Characteristics of class 1 queue in a

three-queue GPS system versus system load and

with di�erent GPS weights

V. Conclusions

In this paper we present a simple and eÆcient ana-

lytical technique for determining the tail distributions of

MMFP sources in a GPS system. The GPS system is de-

composed into a FIFO queue fed by two MMFP sources

for the tagged class using the LMP bound. By applying

matrix analytic methods to the 
uid 
ow, the tail dis-

tribution of the tagged class is obtained. This technique

requires less computational e�ort than a spectral analy-

sis because smaller matrices are processed. Also this ap-

proach has the well-known numerical stability advantages

of matrix analytic methods. It is therefore an e�ective

alternative to the spectral analysis approach. Numerical

results illustrate the accuracy and eÆciency of the tech-

nique.
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