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he Internet continues to provide a fast growing arena
for new applications and services. Multimedia traffic is
becoming an increasing portion of today’s Internet traf-

fic due to the proliferation of applications such as music/video
streaming, video teleconferencing, IP telephony, and distance
learning [1–3]. Such applications can have diverse quality of
service (QoS) requirements, while the traffic generated is
real-time and could be highly bursty. One major concern with
regard to the design, implementation, operation, and manage-
ment of the Internet is how to provide QoS guarantees for
such applications, while achieving a high utilization of net-
work resources.

QoS guarantees can be provisioned in the Internet using
the Intserv architecture described in [4] and the Diffserv
architecture described in [5]. However, due to advances in
Dense Wavelength Division Multiplexing (DWDM) technolo-
gy, overprovisioning in the network core has become popular
among many service providers. Nevertheless, over-provision-

ing does not necessarily solve the QoS problem, for it may not
be applicable to all segments of the network due to technical,
regulatory, or capital investment limitations. In addition, over-
provisioning in the core does not automatically provide ser-
vice assurance due to the best-effort handling of some
application traffic [6]. All these have made it difficult to guar-
antee application performance on the end-to-end basis. As a
result, QoS mechanisms are still needed for the relatively
resource constrained access networks (e.g., wireless access
networks), even while applying over-provisioning in the core. 

There has been tremendous work in the area of QoS
research over the years, which is still an active area attracting
considerable research efforts, as indicated by new conferences
and journal special issues dedicated to this research [7].
Researchers have developed various QoS mechanisms, such as
traffic shaping, admission control, signaling and resource
reservation, scheduling, QoS routing, congestion control, and
queue management (see [6] for a survey on these QoS “build-

T

SHIWEN MAO, AUBURN UNIVERSITY
SHIVENDRA S. PANWAR, POLYTECHNIC UNIVERSITY

ABSTRACT

Provisioning of quality of service (QoS) guarantees has become an increas-
ingly important and challenging topic in the design of the current and the
next-generation Internet. The class of envelope processes (EPs) is one of
the key elements for many QoS provisioning mechanisms. An arrival EP
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ing blocks”). The class of envelope processes (EP), not only
underpinned by rigorous theoretical analysis, but also widely
implemented in practice, is one of the key elements for many
of these QoS mechanisms.

EPs belong to the class of bounding traffic models. An
arrival EP Â (τ) upper bounds the cumulative traffic A(τ) of a
flow over any interval of length τ. Such traffic bounds could
be deterministic (i.e., strict bounds) or probabilistic (i.e., viola-
tion is allowed, but with a small probability), and can be used
for provisioning of deterministic or statistical service guaran-
tees. Such a bounding traffic model is especially appealing
since it is often not feasible to obtain an accurate statistical
characterization of traffic sources, and an exact performance
analysis with statistical traffic characterizations may be
intractable. In addition to arrival EPs, the class-of-service
envelope processes, termed service curves in the literature,
provide deterministic or probabilistic bounds on the cumula-
tive service a traffic flow receives at a network element. The
use of these EPs can abstract not only traffic flow, but also
network elements with complex scheduling disciplines. The
resulting network calculus can greatly simplify performance
analysis at a single network element, as well as for the entire
end-to-end path. 

As a popular traffic model, EPs find wide applications in
network operations and control, such as traffic specification,
negotiation of a “traffic contract” between the user and ser-
vice provider, admission control, and traffic policing, shaping,
and pricing. In practice, deterministic EPs are implemented in
most commercial routers [8, 9] and Linux operating systems
[10, 11]. It is expected that both deterministic and probabilis-
tic EPs will find their wider adoption in network operations as
more multimedia applications and other mission-critical appli-
cations (e.g., distributed computing, e-commerce, and online
stock exchanges) are supported.

In this article we provide a survey of arrival EPs and ser-
vice curves. We overview various EPs proposed in the litera-
ture in the last 15 years and discuss their applications and
performance in QoS provisioning. We believe such a survey is
relevant and of importance due to the strong interest and con-
siderable ongoing efforts in multimedia networking and dis-
tributed computing. Such a survey would be useful and timely
for researchers and practitioners entering or working in this
exciting area, to provide a big picture of the existing work and
to facilitate their efforts along this line of research. We
believe that significant future research is needed to address
QoS issues in resource-constrained access networks, including
4G wireless networks, wireless mesh networks, mobile ad hoc
networks, and wireless sensor networks, and in the new multi-
protocol label switching (MPLS) and peer-to-peer (P2P) net-
working paradigms. Existing work surveyed in this article can
provide useful insights and help the development of new QoS
metrics, mechanisms and architectures for these new network
environments. 

There have been only a few surveys of QoS-related issues.
In [6], Soldatos, Vayias, and Kormentzas provide a compre-
hensive survey of the “building blocks” for QoS provisioning,
such as admission control and QoS routing, among others. In
[12], Knightly and Shroff present a survey and comparison of
representative admission control schemes. The EPs surveyed
in the present article are actually key elements (or “building
blocks”) of the mechanisms surveyed in these related articles.
In [13], Le Boudec and Thiran provides a comprehensive
treatment of deterministic network calculus; however, the
extensive work on probabilistic EPs is not included in this
book. Finally, both deterministic guarantees and probabilistic
guarantees are examined in Chang’s textbook [14], but some
of the latest (and important) advances in this area are not

covered in this work, such as the class of EPs for self-similar
traffic [15, 16] and statistical network calculus [17].

The remainder of this survey is organized as follows. We
examine the class of deterministic EPs, which strictly bound
the cumulative traffic of a source flow and can be used to pro-
vide deterministic services (such as a bounded delay). Starting
with Cruz’s {σ, ρ} EP [18, 19], we first present a general defi-
nition for deterministic EPs and their key properties, and then
introduce two classes of piecewise linear EPs, namely, the {σ→,
ρ→} EP and Deterministic Bounding Interval Dependent (D-
BIND) [20]. Both these piecewise linear EPs are used to
obtain a tighter bound for traffic sources exhibiting burstiness
over multiple time-scales. Next, we examine the application of
deterministic EPs in single-node performance analysis and
admission control tests [13, 18, 21, 22] and also present a sim-
ulation study of their performance in bandwidth utilization
[22]. Finally, we review the set of work on statistical multiplex-
ing of deterministically regulated flows, and show that signifi-
cant improvement in bandwidth utilization can be achieved by
statistical multiplexing that exploits independence among the
traffic flows [23–31].

The class of probabilistic EPs are presented. This class of
EPs bounds the cumulative traffic of a source flow in a proba-
bilistic manner: the source is allowed to exceed its probabilis-
tic EP, but with a small probability. Such EPs are useful in
providing probabilistic service assurances, e.g., a delay bound
that is satisfied with a certain probability. By allowing a frac-
tion of traffic to violate its QoS requirement, a user can easily
trade-off the QoS received with the network resource
required. More importantly, such a probabilistic approach can
significantly improve network resource utilization. We review
representative probabilistic EPs and their applications in
probabilistic service assurance, including the class of bounded
burstiness processes [32–34], Chang’s log-moment generating
function bound [14, 21], Kurose’s bound using a family of ran-
dom variables [35], H-BIND [20, 36], rate variance EPs [37,
36], and effective envelopes [23].

We present recent advances in EPs for self-similar traffic
flows. It has been shown by many empirical studies that net-
work data and video traffic are long-range dependent (LRD)
or self-similar processes that exhibit high burstiness over mul-
tiple timescales [38–41]. The Weibull Bounded Burstiness EP
[34, 42] and the fBm EP [15] are motivated by the fractal
Brownian motion (fBm) traffic model for connectionless traf-
fic [43]. We also introduce a self-similar leaky bucket for
effective regulation of such traffic flows [15]. Finally, we intro-
duce the multifractal Brownian motion (mBm) EP that pro-
vides a good probabilistic bound for multifractal traffic flows
[16].

We review the work on service curves, which provides
deterministic or probabilistic bounds on the cumulative ser-
vice a flow receives at a network element [13, 17, 44–56]. Such
service curves are very useful in abstracting complex service
disciplines and, when combined with arrival EPs, can greatly
simplify the derivation of performance bounds at various net-
work elements. More importantly, service curves are very use-
ful in deriving end-to-end performance measures, where the
entire path could be represented by a network service curve.
We present the key deterministic network calculus results in
this section [13, 18, 19, 21, 57], as well as an important proba-
bilistic extension: statistical network calculus [17, 46], which
can provide end-to-end statistical assurance using the min-
plus algebra [58].

We conclude this article with a summary and qualitative
comparison of the EPs surveyed in this article, and a discus-
sion on future research directions.
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DETERMINISTIC ENVELOPE PROCESSES

In this section we review the class of deterministic EPs. We
first present the definition and properties of such EPs, and
then examine two representative deterministic EPs. Their
applications in QoS provisioning is discussed and a perfor-
mance study of such EPs is reviewed. Finally, we review the
class of work on the statistical multiplexing of deterministical-
ly regulated flows. 

DEFINITION

As discussed, envelope processses (EPs) are popular traffic
models used to bound the traffic generated by user sessions
[18, 19]. Consider a source generating traffic at rate a(t). The
amount of traffic generated in the time interval [t1, t2) is A(t1,
t2) = ∫t1

t2 a(t)dt. For discrete-time systems, a(t) is the amount
of arrival traffic in the t-th time slot, and the cumulative traf-
fic during [t1, t2) is A(t1, t2) = Σt1

t
2
–1 a(t). Throughout this arti-

cle we consider stationary sources, that is, the statistical
characteristics do not change over time.

For such traffic flows, Cruz’s {σ, ρ} EP is defined as:

A(t2–t1) ≤ ρ ⋅ (t2 – t1) + σ, ∀t1 ≤ t2, (1)

where σ is the burstiness allowed, and ρ is an upper bound on
the long term average rate of the traffic flow [18]. Although
the cumulative traffic A(t1, t2) could have various forms, it is
upper bounded by the deterministic function Â (t2 – t1) = ρ ⋅
(t2 – t1) + s during [t1, t2) for any t1 ≤ t2. Figure 1 illustrates
such an EP and the corresponding traffic flow. The EP can be
shifted along the time axis from t = 0 to t = τ1 (or to t = τ2),
while the cumulative arrival should always be upper bounded
by the shifted functions. That is, the EP is only a function of
the time interval τ = t2 – t1, regardless where the interval
begins (i.e., t1).

Cruz’s EP is a simple linear function defined by two
parameters σ and ρ.1 In fact, a deterministic EP does not have
to follow such a specific form, and could be any nondecreas-
ing, nonnegative function of time Â (τ), as long as the cumula-
tive traffic is bounded as follows [21]:

A(t1, t2) ≤ Â (t2 – t1), ∀t1 ≤ t2. (2)

The choice for a specific Â (τ) depends on how easy it is to
enforc and analyze, and how tight it is in bounding the traffic
flow (and thus how efficient it is in resource utilization). We
will discuss examples of generalized deterministic EPs in the

following sections.

It is worth noting that for a given traffic flow, its EP is not
unique. For example, if we have A(t) ≤ Â (τ), then we have
A(t) ≤ k ⋅ Â (τ) for any k > 1. For QoS provisioning, it is
therefore important to examine the tightest one among all the
bounding functions. It is shown in [21] that if Â (τ) is increas-
ing and subadditive,2 its long-term average rate ρ̂ exists:

(3)

The limit ρ̂ is referred to as the envelope rate of Â (τ). The
minimum EP (i.e., the tightest bounding function) is called the
minimum envelope process (MEP) of A(t) and is found to be

(4)

That is, A*(t) is the maximum amount of traffic that could
possibly be generated by the given source in a time interval of
length t. It is shown in [21] that A*(t) is increasing and subad-
ditive. The tightest bound on the average rate, ρ*, called the
minimum envelope rate (MER), is the envelope rate of A*(t)
[see Eq. 3].

THE {σ→, ρ→} ENVELOPE PROCESS

The {σ, ρ} EP has the advantages of being simple and easy to
enforce with a token bucket. However, it is relatively loose
because it enforces a burstiness constraint σ over all the
timescales, while typically a source tends to exhibits smaller
burstiness over larger time-scales. For example, consider a
variable bit rate (VBR) video source. The burstiness is largest
at the timescale of a frame time. Its average bit rate over an
interval gradually decreases as the interval gets larger, and is
equal to the long-term average rate at the timescale of the
entire video trace length. For a given traffic process, a tighter
EP indicates a more accurate estimate of the actual traffic
load and implies that less network resources are required to
accommodate it. To achieve a high utilization, it is thus desir-
able to use an EP that bounds the traffic over different
timescales using different burstiness factors.

The discussion above suggests that a tighter traffic bound
can be obtained by deploying a concave, piecewise-linear
envelope. In [22, 31], the {σ, ρ} EP was extended to the {σ→,
ρ→} EP, which maintains n {σ, ρ} pairs. The amount of traffic
in a time interval t is restricted by Â (t) = min1≤i≤n{σi + ρit}.
Since each term σi + ρit is an affine function and the mini-
mum of n affine functions is concave, Â (τ) is concave and
subadditive.

Figure 2 illustrates such a {σ→, ρ→} EP, which consists of
four linear segments and tightly bounds the arrival process
A(t). The {σ→, ρ→} EPs can be enforced using a number of cas-
caded leaky buckets, while a conforming flow keeps all the
leaky buckets from overflowing. The T-SPEC in Intserv [5]
adopts a dual leaky bucket model for traffic specification. The
corresponding EP is Â (τ) = min{M + Pt, B + rt}, where M,
P, B, and r are parameters with constant values. This is a spe-
cial case of the {σ→, ρ→} EP with n = 2. 

D-BIND

Another piece-wise linear EP, D-BIND was introduced by
Knightly et al. to address this multiple time-scale burstiness
problem in traffic flows [20]. To further illustrate this prob-
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1 An arbitrary traffic flow can be policed to be conforming to the {σ, ρ}
EP by using a leaky bucket with a token rate ρ and a token bucket size σ. 2 A process A(t) is subadditive if A(t1 + t2) ≤ A(t1) + A(t2).

                                                                                                                                                                                                                                                                                                                                                           



IEEE Communications Surveys & Tutorials • 3rd Quarter 2006 5

lem, consider the example in Fig. 3, which plots the arriving
process of an MPEG video trace with frame pattern
IBBPBBPBB. Usually, I frames have the highest rates and B
frames the lowest rates. It can be seen from this figure that
using different bounds on the rate for different time intervals
can provide a tighter approximation for the traffic flow than
using a single worst case bound for all the intervals.

Let Rk denote a data rate and Ik denote the corresponding
time interval. D-BIND was defined using multiple rate-inter-
val pairs, {(Rk, Ik), k = 1, 2, …, K}, as the following piecewise
linear function:

(5)

where Â (0) = 0 [20]. With Eq. 5, the rate Rk can be viewed as
an upper bound on the session’s rate over any time interval of
length Ik, that is, A(t, t + Ik)/Ik ≤ Rk, ∀t > 0, k = 1, 2, …, K.

It is worth noting that the (σ, ρ) model may be viewed as a
special case of the D-BIND model, since both are piecewise
linear functions. For both EPs, an important design parameter
is K, the number of rate-interval (or {σ→, ρ→}) pairs to use.
There is a trade-off between the tightness of the EP (which
determines the bandwidth utilization at network nodes) and K
(which determines the complexity in shaping and policing).

Generally, the more rate-interval pairs used, the tighter the
bound and therefore the higher the utilization (see the analy-
sis in the next section). However, considering a typical core
router where tens of thousands sessions are multiplexed, it is
impractical to use a large number of rate-interval pairs for
each session. Knightly et al. suggest that a source specify a
small number of rate-interval pairs (e.g., four or eight) for
connection admission control and policing [20]. We examine
this issue subsequently.

APPLICATIONS OF DETERMINISTIC EPS

Generally, the use of EPs is two-fold:
• To simplify the enforcement of user traffic flows (e.g., by

adopting one or more leaky buckets) at the network
boundary

• To simplify the QoS provisioning in networks
In this section we discuss how to derive performance bounds
and how to perform admission control using deterministic
EPs. Their performance is discussed in the next section.

Performance Bounds — Consider a network element with
service rate c, modeled as a slotted-time single server G/G/1
queue. At time slot t, the amount of arrival traffic is a(t).
Under a work conserving policy,3 the backlog process q(t) of
the queue is governed by the Lindley’s equation [59]:

q(t + 1) = max{0, q(t) + a(t) – c}. (6)

That is, the queue length in the next time slot is the current
queue length increased by the traffic input a(t) and decreased
by the traffic being served during this slot. The maximum
operation is used, since the queue length should always be
nonnegative. It has been shown in [59] that the distribution of
q(t) determined by Eq. 6 converges to a unique limit distribu-
tion as t → ∞, under some mild conditions [e.g., a(t) is station-
ary and ergodic, and the average of a(t) should be less than
the service capacity c].

Assuming the queue is empty at time 0, expanding Eq. 6
recursively yields

q(t) = max{0, max{0, q(t – 2) + a(t – 2) – c} + a(t – 1) – c}
= max {0, a(t – 1) – c, q(t – 2) + a(t – 1) + a(t – 2) – 2c}
= …
= max {0, a(t – 1) – c, …, a(t – 1) + a(t – 2) + … + a(0) – tc},

that is,

(7)

(8)

Eq. 7 conveniently relates the cumulative traffic A(t) to the
queue backlog.4 An upper bound on the backlog can be
derived by substituting A(t) with its upper bounding approxi-
mation Â (τ) as in Eq. 8. Note that in Eq. 7, the right-hand-
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nFigure 3. Burstiness of an MPEG video trace with a frame pat-
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3 That is, the server will not be idle whenever traffic is backlogged.

4 For continuous time systems, we have q(t) = maxτ≤t{∫τta(t)dt – (t – τ)c}
and q(t) = maxτ≤t{A(t – τ) – (t – τ)c} = maxs≤t{A(s) – sc}. This deriva-
tion is similar to the discrete time system (where summation is replaced
with integration for continuous-time systems). In addition, this powerful
equation has been used to derive probabilistic bounds on QoS metrics.
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side (RHS) consists of the random arrival process A(t), while
in Eq. 8, the RHS consists of a deterministic function Â (τ).
The analysis is greatly simplified by this substitution. 

Based on Eq. 8, we can derive performance bounds on
backlog and delay for the network element as follows. Substi-
tuting s = t – k into Eq. 8, we have [13]:

(9)

This is intuitive, since backlog is actually the amount of cumu-
lative arrival decreased by the amount that has been served.

The delay bound depends on the specific service discipline.
For a work conserving queue with any service discipline (e.g.,
LCFS or FCFS), the delay of a traffic unit is upper bounded
by the system busy period d. That is, since any backlog will be
served within d time units, the delay experienced by any traffic
unit will be no larger than d. Clearly, d is the time interval
when the cumulative traffic arrival is equal to the cumulative
service. An upper bound on d can be easily computed as [18,
19, 35]:

d ≤ min {t : t ≥ 1 and Â (t) – ct ≤ 0}. (10)

If the service discipline is FCFS, then a traffic unit will be
served after all the traffic arriving earlier than itself is cleared.
This fact can be exploited to tighten the delay bound. Consid-
er a traffic unit arriving at time t. Since it sees a backlog of
q(t), the delay it experiences will be the time it takes to serve
the backlog q(t), that is, s such that q(t) – cs ≤ 0. We then
have

d(t) ≤ min {s : s ≥ 1 and Â (t) – c(t + s) ≤ 0}. (11)

These results can be further explained via an intuitive
graphical interpretation. In Fig. 4a, the queue becomes busy
after time 0. At time t1, the difference between the cumulative
arrival and cumulative service is the amount of backlog in the
queue (i.e., q1). Since we use the deterministic EP to approxi-
mate the traffic flow, an upper bound on the backlog is found
to be the difference between the EP and the cumulative ser-
vice, (i.e., q2). By examining the graph, we can see that a
bound for the maximum backlog qmax occurs at time t2. 

In Fig. 4b, when the real traffic-flow curve intersects with
the cumulative service curve at time d1, the queue becomes
empty again. However, since we are using the deterministic
EP to approximate the traffic flow, an upper bound on the
busy period is found to be the time instance when the EP
intersects with the service curve (i.e., at d). In an FCFS queue,
for a traffic unit arrives at time t3, the backlog it sees will be
cleared at time t4 (i.e., when the cumulative service is equal to

the cumulative arrivals at time t3). Therefore, its actual delay
is d2, as shown in the figure. Since EP is used as an upper
bound for the traffic flow, the upper bound on delay for this
traffic unit is d3.

According to the definition given by Eq. 2, there could be
an arbitrary number of EPs for a given traffic flow. From the
examples in Fig. 4, it is easy to see that different EPs will give
different backlog and delay bounds for the same traffic flow
and service capacity. As a result, tighter bounds on A(t) will
always be desirable for achieving more accurate performance
bounds. In addition, the delay and backlog bounds are tight in
the sense that these bounds are realizable, since in the worst
case the cumulative arrival A(t) could be identical to Â (τ),
that is, the equality holds in Eq. 2. On the other hand, these
bounds are loose in the sense that they are the worst-case sce-
narios that only occur rarely in most applications.

Admission Control Tests — The delay bound discussed in
the previous section can be used in admission control tests for
deterministic service. Admission control is used in network
nodes to keep them from being overloaded. Usually an admis-
sion control test is invoked when a new flow request arrives in
order to verify that, if the new flow is admitted, the QoS
requirements (e.g., a maximum acceptable delay) of existing
flows and the new flow will all be satisfied. Otherwise, the
new flow request will be rejected.

The deterministic admission control test conditions for var-
ious schedulers, that is, FCFS, static priority (SP), and earliest
deadline first (EDF), are presented in [18, 22, 60] and are
summarized in Table 1. These tests are used to verify if the
delay requirements of all the sessions (existing ones and the
new one) can be satisfied, and can be used to derive the maxi-
mum number of user sessions with various deterministic delay
requirements that can be accepted at a network element
(called the admissible region).

Consider an FCFS queue fed by N source flows, each con-
forming to a deterministic EP Â i(t), i = 1, …, N, and requir-
ing a delay no larger than d. Let si be the maximum packet
size of the i-th flow. Since the scheduler does not distinguish
between packets, the delay-bound test simply verifies that the
maximum delay will not be larger than the delay requirement
d. Suppose the queue is idle at time 0 and is busy thereafter.
Since a traffic unit arriving at time t sees a backlog of ΣN

i=1
A(t), its delay is the time it takes to clear the backlog and the
largest remaining service time of the packet that is being
served at time t, max1≤i≤N si/c (since the service is not preemp-
tive). Replacing the backlog with the sum of EPs will give the
admissible condition for the FCFS service discipline (see Eq.

q t A s sc
s t
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nFigure 4. A graphical interpretation of the backlog and delay bounds.
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11).
In SP systems, each traffic flow is assigned a priority level

p, 1 ≤ p ≤ P, according to their delay requirements dp. Usually
a higher-priority flow has a tighter delay requirement, that is,
dp < dq, if p < q. The system maintains P FCFS queues, and
traffic belonging to the same priority level is put into the same
FCFS queue. When the server is available, it always serves the
first packet in the nonempty FCFS queue with the highest pri-
ority. 

Let the set of flows with priority p be Cp, and the maxi-
mum packet size for priority-p flows be sp

max. Consider a prior-
ity-p packet arriving at time t. The packet will be served only
after the following two types of traffic are served:
• The priority-p backlog at t (the first term on the RHS of

the test condition in Table 1) and
• The higher-priority backlog and the higher-priority traffic

that arrived after t but before the tagged packet’s service
time (the second term on the RHS of the test condition)

This is because such a packet arriving later than the priority-p
packet can still be served earlier due to its higher priority.
Similarly, the last term on the RHS of the test condition is the
largest remaining service time of a lower priority packet that
is being served at time t.

In EDF, each packet is assigned a deadline (e.g., its arrival
time plus its delay requirement). Packets in the queue are
sorted according to their deadlines and the scheduler always
serves the packet with the smallest deadline [61]. EDF has
been shown to be optimal with respect to schedulability, in the
sense that it can provide the highest level of deterministic
delay assurance among all scheduling disciplines [60, 62]. The
EDF schedulability condition in Table 1 can be interpreted as
follows. Consider a packet with delay requirement dj arriving
at time t – dj. The packet should be served before its deadline
t, which is possible if the maximum amount of traffic arrives

with a tighter deadline smaller than or equal to t, that is, ΣN
i=1

Â i (t – di) has been cleared before time t. The second term on
the RHS of the schedulability condition is again due to the
fact that the packet currently in service cannot be preempted.

PERFORMANCE OF DETERMINISTIC ENVELOPE PROCESSES

For the class of deterministic EPs, there are two interesting
questions to be answered:
• What is the best performance in utilizing network

resources that can be achieved using these EPs?
• For the class of piecewise linear EPs, how many {σ, ρ}

pairs (or rate-interval pairs) are needed to achieve a uti-
lization close to the best performance?
These questions have been addressed in [22], via experi-

ments with VBR video traces. To answer the first question,
the MEP (see Eq. 4) of MPEG video traces, termed empirical
envelope in [22], is used in admission control tests. Since the
empirical envelope is computed from a given video trace
(Jurassic Park, MPEG encoded), it requires the entire trace a
priori, and is hard to specify or police in practice. Neverthe-
less, it is the tightest envelope for the specific video trace.
Using empirical envelopes in admission control tests will yield
the maximum number of acceptable sessions. This can serve
as a benchmark for evaluating the performance of other
deterministic EPs that are more practical.

The maximum number of admissible sessions using the
optimal EDF scheduler is given in Fig. 5a, as compared to
peak rate allocation and average rate allocation [22]. It can be
seen that the best utilization the deterministic EP can achieve
(using the empirical envelope) lies between the peak rate allo-
cation and the average rate allocation. Furthermore, the uti-
lization increases when the delay constraint is relaxed.
Although the utilization is low, compared to the average rate

nFigure 5. Performance of deterministic envelope processes [22].  1996 IEEE.
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nTable 1. Delay bound tests for FCFS, EDF, and SP packet scheduler [22].

Scheduler Condition

FCFS d ≥ Σi=1
N Â i (t)/c – t + max1≤ i≤N si /c, for all t ≥ 0.

Static Priority ∃τ ≤ dp : t + τ ≥ Σi∈Cp Â i(t)/c + Σq=1
p–1 Σi∈Cq Â i(t + τ)/c – t + maxr>psr

max/c, for all p, t ≥ 0.

EDF t ≥ Σi=1
N Â i(t – di)/c + maxdi>t si /c, for all t ≥ d1.
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allocation, there is still significant improvement of peak rate
allocation, especially when the delay constraint is relaxed. For
example, utilizations ranging from 15 to 30 percent are
achievable for a delay bound of 30 ms. This is because in the
worst case that all the sessions are transmitting at their peak
rates, the excess traffic can be buffered briefly, as long as their
delay constraints are met. The more relaxed the delay con-
straints are, the longer they can be buffered; hence, the small-
er service capacity required.

To answer the second question, Fig. 5b in [22] presents the
utilization achieved by several {σ→, ρ→} EPs having different
numbers of {σ, ρ} pairs, where the maximum utilization
achieved by the empirical envelope serves as a benchmark.
The general trend in Fig. 5b is that the greater the number of
{σ, ρ} pairs, the higher the utilization, since a session requires
less capacity when a more accurate approximation (i.e., a
tighter upper bound) is used in admission control. Another
interesting observation is that the additional improvement in
utilization decays quickly when more {σ, ρ} pairs are used.
This implies that reasonably high utilization, as compared to
the benchmark, can be achieved by using a relatively small
number of {σ, ρ} pairs.

STATISTICAL MULTIPLEXING OF REGULATED SOURCES

Statistical Multiplexing — The experimental studies in [22]
(see the previous section) provide an idea about the best
deterministic performance guarantees that can be achieved by
using deterministic EPs (i.e., using the tightest envelope —
MEP, and the optimal scheduling discipline — EDF). In
order to achieve higher utilization, statistical multiplexing
must be explored. On the other hand, deterministic EPs are
still highly attractive due to the fact that they are amenable to
enforcement. Therefore, a natural solution is statistical multi-
plexing of deterministically regulated flows. A statistical service
can improve upon a deterministic service by taking advantage
of the statistics of individual source, and the statistical inde-
pendence of the source traffic flows. Note that independence
of the source flows is the most fundamental assumption for
the following results.

A simple example is given in Fig. 6. Figure 6a plots a dis-
crete-time, periodic on–off source: it generates one unit of
traffic in time slot 1, and then can be silent for the remaining
nine time slots, and so forth. Multiplexing N such sources
(with identical phases), we get an aggregate traffic flow which
is on in time slot 1 and off in the remaining nine time slots,
and the aggregate peak rate is N, as shown in Fig. 6b. Howev-
er, if the sources have independent, random phases (e.g.,
source 1 is on in time slot 1, while source 2 is on in time slot
5, and so forth), the aggregate traffic is actually smoothed out,
as shown in Fig. 6c. The aggregate rate a(t) fluctuates slightly

around the average rate N × 1/10. A direct result of this
observation is that the amount of resources required to sup-
port QoS for N traffic flows will be much smaller than N
times the resource required to support QoS for a single traffic
flow.

It is worth noting that even with random phases, it is still
possible that the worst-case scenario in Fig. 6b will occur, but
such events only occur rarely. If we perform admission control
according to the “average” or more likely case (i.e., Fig. 6c), a
significant improvement in resource utilization can be
achieved. When the worse-case scenario happens, there will
be a violation of the QoS requirements. Through rigorous
modeling and analysis, however, we can guarantee that such a
violation occurs with low probability (e.g., 10–6). 

Related Work — The analysis work along this line generally
takes two steps. First, find the worst-case traffic flow, generat-
ed by the so-called adversarial sources, that maximizes the
resources required (in the hard QoS guarantee case) or the
QoS violation probability (in the soft QoS guarantee case),
which, however, still conforms to the deterministic EP. Such
adversarial sources are extremal, periodic on-off processes
with a random phase for bufferless multiplexers [26, 63]. For
buffered multiplexers, the adversarial traffic pattern is found
to be periodic, with multiple “on” phases and a different rate
in each “on” phase [63–65]. Second, take advantage of the
random phases of the adversarial sources and multiplex them
statistically.

In [23], admission control for a network node with finite
buffer B and capacity C is studied. The joint allocation of
buffer and capacity is first reduced to a single resource alloca-
tion problem by the notion of a virtual buffer/trunk system.
Then the derived single resource allocation problem is solved
by applying the known results on bufferless multiplexing,
where the Chernoff Bound [66] is used to estimate the loss
probability.

In [28], it was found that there is no benefit in resource
sharing for lossless multiplexing. Furthermore, for determinis-
tic QoS guarantees, there is a unique timescale determined by
the system parameters and the input flows, which determines
the optimal buffer/bandwidth trade-off. For statistical multi-
plexing, [28] transforms the two-resource allocation problem
into two independent single-resource allocation problems,
which is shown to achieve higher multiplexing gain than [26].

In [29], the multiplexer was examined under the more gen-
eral {σ→, ρ→} EP. An interesting result in [29] is that although
the extremal, periodic on-off source is adversarial for a buffer-
less multiplexer, it is not adversarial for the transformed two-
resource allocation problem. In [31], a bufferless multiplexing
system is studied, in which each regulated flow is first
smoothed by a smoother with a capacity that is determined by

nFigure 6. An illustration of statistical multiplexing gain.
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the delay requirement of that source. This novel structure
enables end-to-end statistical guarantees [30], since the
bufferless multiplexer ensures that a flow still keeps the same
description after leaving the system. There is no need to
implement per-node traffic shaping [27] with this framework.

In [23], local and global effective envelopes for the aggre-
gate regulated flows are constructed using the Chernoff
Bound and the Central Limit Theorem (CLT) [67]. Applying
the effective envelopes in admission control tests further
improves the admissible region [23, 68]. More details on effec-
tive envelopes are provided below. 

Finally, a multiplexer with general flows is studied in [24]
using a CLT approach and in [25] using large deviation theo-
ry, respectively. Although these papers do not assume regulat-
ed flows, their results can be applied to the multiplexing of
regulated flows. The maximum variance bounds in [24] is
found to achieve the highest utilization, as compared to sever-
al other approaches in a comparison study of admission con-
trol schemes [12].

PROBABILISTIC ENVELOPE PROCESSES

PROBABILISTIC ENVELOPE PROCESSES AND
SOFT QOS GUARANTEES

In the previous section we discussed deterministic EPs which
can be used for provisioning of deterministic or “hard” perfor-
mance guarantees, such as worst-case delay bounds and no
packet dropped in the network. Generally, such deterministic
services are quite conservative since they are based on worst-
case analysis [22]. In addition, hard performance guarantees
might be an overkill for many applications, say, multimedia
communications, where a certain amount of loss or delay vio-
lation is tolerable.

As opposed to the deterministic service approach, a statis-
tical service provides probabilistic service assurances. For
example, such “soft” QoS guarantees can be in the following
forms:

Pr {delay ≥ d} ≤ ε or Pr {loss ≥ l} ≤ ε, (12)

where ε is the probability that the delay or loss bound d or l is
violated and is generally dependent on the specific applica-
tion.

By allowing a fraction of traffic to violate its QoS require-
ment, a user can trade-off the QoS he receives with the net-
work resources required. More importantly, such a
probabilistic approach can significantly increase network
resource utilization. In the previous section, we have seen sig-
nificant improvements when statistical multiplexing is
explored, even though each source is deterministically regulat-
ed. An alternative approach in soft QoS provisioning is to use
the class of probabilistic EPs that bound traffic flows in a
probabilistic manner. In the following, we will survey repre-
sentative probabilistic EPs and the probabilistic QoS guaran-
tees they provide.

BOUNDED BURSTINESS PROCESSES

Definition — The piecewise linear EPs discussed in the previ-
ous section extend the {σ, ρ} EP by using multiple {σ, ρ}
pairs. Both classes of EPs bound the flows deterministically,
(i.e., Eq. 2 always holds true). Another dimension of extend-
ing Cruz’s work is to allow the EPs to be violated (i.e., letting
Eq. 2 hold true in a probabilistic sense). The cumulative traf-
fic A(t) is allowed to exceed its EP Â (τ), but with a probabili-
ty decaying with the degree that the EP is exceeded. This class

of EPs are known as the Bounded Burstiness Processes [32].
Let F be the set of functions f(σ) such that for any order n,

the n-fold integral

is bounded for any σ > 0. An arrival process A(t) has a
stochastically bounded burstiness (SBB) with upper rate ρ and
bounding function f(σ) if
• f(σ) ∈ F; and
• Pr{A(s, t) ≥ ρ (t – s) + σ} ≤ f(σ), for all σ ≥ 0 and all t ≥ 0.

As will become clear shortly, the first condition in the SBB
definition is required for the closure property: a traffic flow
(or its description) will not explode as it travels through one
network node after another. Also note that the finiteness of
the n-fold integral implies that f(σ) is a decaying function
(otherwise the integral from σ to ∞ will not exist). The second
condition specifies that the probability that A(t) exceeds the
{σ, ρ} EP decays with f(σ): the larger the σ, the smaller the
violation probability.

Furthermore, a stochastic process q(t), that is, the backlog
process, is stochastically bounded (SB) with bounding function
f(σ) if
• f(σ) ∈ F; and
• Pr{q(t) ≥ σ} ≤ f(σ), for all σ ≥ 0 and all t ≥ 0.

As in the SBB definition, the first condition above is also
required for the closure property. The second condition in the
above definition specifies that the probability that q(t) exceeds
σ (i.e., the probability that the backlog is larger than σ)
decays with f(σ): the larger the σ, the smaller the violation
probability.

Since f(σ) is general in both definitions, one can choose
different forms of f(σ) for traffic flows with different charac-
teristics. For example, an exponential bounding function can
serve a good model for short range dependent (SRD) traffic
flows,5 while the sum of exponentials or a Weibullian bound-
ing function can be used to characterize LRD traffic that
exhibits burstiness over multiple timescales.

The SBB Calculus — Based on the above definitions,
Starobinski and Sidi present a network calculus for SBB pro-
cesses [32], which is very useful in analyzing a feedforward
network6 with SBB arrivals, such as proving the stability of
such networks and deriving QoS performance measures.7 The
SBB calculus is summarized in the following.

Summation — Let Ai(t) be SBB with {ρi, fi(σ)}, i = 1, 2.
Then the sum of these two SBB processes A1(t) + A2(t) is also
SBB with {ρ1 + ρ2, g(σ)}, where g(σ) = f1(pσ) + f2((1 – p)σ)
and p is any real number in (0, 1). 

This result is derived via some basic properties of random
variables. Consider two random variables X1 and X2. For a
constant x, the set of events that {X1 + X2 ≥ x} is a subset of
{X1 ≥ px} ∪ {X2 ≥ (1 – p)x}, for all 0 < p < 1. Therefore, the

… ∞∞ ∫∫ σσ
n times

nf u du

 
1 24 34

( )( )

5 An SRD process has an autocorrelation function that decays exponen-
tially.

6 A feedforward network is a network in which there are no cycles in the
graph generated by the routes of various sessions. This concept depends on
both the topology of the network and the routing scheme applied.

7 A queueing network is stable if the queues do not increase without
bound, that is, limσ→∞Pr{qi ≥ σ} = 0, where qi corresponds to the steady-
state workload in the i-th network element.
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probability of the former event should be no larger than that
of the latter, that is, Pr{X1 + X2 ≥ x} ≤ Pr{[X1 ≥ px] ∪ [X2 ≥
(1 – p)x]}. Since the probability of the union of two events is
upper bounded by the sum of the probabilities of the two
events, we have Pr{(X1 + X2) ≥ x} ≤ Pr{X1 ≥ px} + Pr{X2 ≥
(1 – p)x}. Now if both X1 and X2 are SBB, substituting the
definition in the previous section, we get the summation
result. Note that the derivation does not require the two
sources be independent.

Characterization — For a work-conserving system with ser-
vice rate ρ, if the backlog q(t) is SB with bounding function
f(σ), that is, Pr{q(t) ≥ σ} ≤ f(σ), then the input process of the
system is SBB with upper rate ρ and the same bounding func-
tion f(σ), that is, Pr{A(t – s) ≥ ρ(t – s) + σ} ≤ f(σ).

This result shows the relation between the input process
and the backlog process. It is derived from the Lindley’s equa-
tion. From Eq. 7, we have q(t) ≥ A(t – s) – (t – s)c. From the
SB definition, we have Pr{A(t – s) – (t – s)c ≥ σ} ≤ f(σ), which
gives the characterization result.

Calculus for an Isolated Network Element — For a work
conserving queueing network element with service rate c, if
the input process A(t) is SBB with {ρ, f(σ)}, then the output
process B(t) is SBB with {ρ, g(σ)}, where g(σ) = f(σ) +
{1/c–ρ} ∫σ∞ f(µ)dµ, and the backlog process q(t) is SB with the
same bounding function g(σ).

The proof of these results is more mathematically involved.
We omit the proof here and refer interested readers to [42] for
more details. There are several interesting implications from
these results. First, if exogenous inputs to a network with work-
conserving elements are SBB, then all the traffic flows within
the network are SBB and all the backlogs in the network ele-
ments are SB (i.e., the closure property is conserved). Second,
the SBB calculus is quite general, since there is no assumption
made on flow independence and scheduling disciplines (except
that the servers are work-conserving). On the other hand, if fur-
ther information on scheduling and independence is available, a
finer analysis may result in better performance bounds [32, 42].

Third, the last result gives the backlog distribution, that is,
SB with g(σ) if the arrival process is SBB with {ρ, f(σ)}. This
can serve as a good approximation of loss probability for finite
buffer systems [69]. Other performance measures such as delay
distribution can also be derived from this result. Finally, the
SBB calculus greatly simplifies the analysis of any feedforward
network fed by external SBB processes, since the end-to-end
analysis can be reduced to the analysis of each isolated node
along the route inductively. Also note that every time when a
flow traverses a network element, there will be an additional
integration over [σ, ∞) on the bounding function. For the traf-
fic flow to remain bounded after traversing n network ele-
ments, the n-fold integral of f(σ) should be bounded (see the
definition of SBB and SB earlier in this section). More discus-
sion on end-to-end analysis will be presented later.

Exponential Bounded Burstiness — Exponential Bounded
Burstiness (EBB) processes are SBBs with a bounding func-
tion f(σ) = φe–ασ, where φ and α are source-specific constants
[33]. With this definition, the probability that the input pro-
cess exceeds the linear EP Â (τ) = ρt + σ decays exponential-
ly or faster than exponentially. Obviously, this is true for all
SRD traffic.

Interesting results on EBB calculus have been established
in [33]. In addition, since no independence assumption is
required when applying the analysis in [33], both feedforward
networks and general cyclic networks can be analyzed. Perfor-
mance of a GPS server (and a GPS network) with EBB ses-

sions can be found in [70].

Sum of Exponentials — This is a more general class of
bounded burstiness processes than EBB. A Sum of Exponen-
tials Bounded Burstiness process has a bounding function in
the form of the summation of a number of exponentials, that
is, f(σ) = ΣK

k=1 φk e–αkσ, where φk and αk are constants, for k
= 1, …, K [32]. The motivation behind this model is the exis-
tence of multiple timescales in network traffic and the obser-
vation that, on logarithmic scale, the delay distribution in a
multiplexer can be roughly broken into two linear regions,
called the cell region and the burst region [71]. Using multiple
exponential bounds on the tail distribution of a queue can
capture this multiple timescale phenomenon and provide a
tighter bound than EBB.

One problem with the calculus of sums of exponentials is that
the number of exponentials required to bound the burstiness of a
process within the network grows each time the process merges
with another process (i.e., summation). As a result, this traffic
model does not have the closure property. In [32], Starobinski
and Sidi present an ad hoc procedure, which provides a simple
way to derive bounding functions using the sum of two exponen-
tials, but at the cost of lower accuracy.

Another interesting example of SBB is the Weibull Bounded
Burstiness Processes (WBB), which has a Weibullian bounding
function [34, 42]. Since WBB also belongs to the the class of
EPs for self-similar traffic, we present its discussion later in this
article.

CHANG’S LOG-MOMENT GENERATING FUNCTION BOUNDS

In addition to bounding the burstiness of a traffic flow, proba-
bilistic QoS guarantees can also be achieved by deterministi-
cally bounding the moment generating function of A(t) [21].8
Consider a random variable X. If its moment-generating func-
tion is bounded by a finite constant ψ as E(eθX) ≤ ψθ, then
from the Chernoff bound [66], its distribution is bounded
exponentially with respect to θ as:

Pr{X ≥ x} ≤ ψθ e–θx, for all x > 0. (13)

Since the cumulative arrival A(t) is a random variable, its
moment generating function can thus be bounded by a deter-
ministic function Â (θ, t) as follows:

(14)

where Â (θ, t) is called an EP of A(t) with respect to θ [21]. As
in the deterministic case, the MEP of A(t) is A*(θ, t) =
sups≥0{(1/θ)log E exp [θA (s, s + t)]}, and the MER of A(t) is
a*(θ) = lim supt→∞A*(θ, t)/t. It is shown in [21] that the MER
of A(t) is an increasing function of θ: from the mean rate to
the peak rate, as θ increases from 0 to ∞.

Applying the Chernoff bound Eq. 13 and the Lindley’s
equation (Eq. 6), the log-moment generating function EP can
be used to derive QoS performance measures at a network
element. Consider a queue fed by a flow with a linear EP,
Â (τ) = ρ(θ)t + σ(θ). Assume ρ(θ)< c to make a stable sys-
tem. We have the following interesting results from [21]:

Backlog Distribution — The total backlog q(t) is bounded
exponentially with respect to θ, that is, Pr{q(t) ≥ x} ≤ β(θ)e–θx,
where β(θ) is a constant.

1
1 2

2 1 1 2θ
θθlog ˆ( , ), ,( , ) Ee A t t t tA t t ≤ − ∀ ≤

8 The moment-generating function of a random variable X is defined to be
the expectation of eθX, that is, E{eθX}.
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Delay Distribution — If the FCFS scheduling policy is used,
the delay distribution is also bounded exponentially as Pr{d(t)
≥ d} ≤ eθρ(θ) β(θ)e–θc(d–1).

Input–Output Relationship — The departure process b(t)
has an MEP B^(θ, t) ≤ ρ(θ)t + 1/θ logβ(θ). The departure pro-
cess still has the same long-term average rate as the input pro-
cess, but with a possibly different burst factor.

Again, there is the closure property: if the input processes
to such a network have their log-moment generating functions
bounded, then every process in the network (e.g., delay, back-
log) and the arrival processes at internal nodes has an expo-
nentially bounded distribution. These are useful results for
soft QoS guarantees, from which one can estimate how much
network resources (e.g., buffer or bandwidth) are required to
achieve a desired buffer overflow probability (or a delay dis-
tribution), and conveniently trade-off the QoS violation prob-
ability and the network resource required. 

KUROSE’S BOUNDS

In [35], Kurose presented a framework for soft QoS provision-
ing, which is based on EPs with a family of bounding random
variables. With this framework, a traffic flow is characterized
by a family of random variables {B(t1), B(t2), …} that stochas-
tically bounds the source over the respective interval lengths
tk, k = 1, 2, …. 

Such a bounding approach is somewhat similar to D-
BIND, where multiple rate-interval pairs are used to bound
the cumulative arrival A(t). The important difference here is
that the D-BIND EP will not be violated, while Kurose’s EP
bounds the traffic flow in a probabilistic manner. More specif-
ically, a random variable X is said to be stochastically larger
than a random variable Y (denoted as X fst Y) if and only if
Pr{X > x} ≥ Pr{Y > x} for all x [72]. Therefore, in the defini-
tion of Kurose’s bounds, the cumulative traffic in any time
interval tk is stochastically bounded by the corresponding ran-
dom variable B(tk), that is, Pr{B(tk) > x} ≥ Pr{A(τ, τ + tk} >
x), or B(tk) fst A(τ, τ + tk), ∀τ.

Consider an FCFS multiplexer with a link speed of c and
serving N flows. Each flow is characterized by its respective
family of bounding random variables. A stochastic bound on
the delay in this system is shown to be

(15)

where β is an upper bound on the busy period and is the small-
est nonnegative value such that Σi=1

N |Bi(β)| ≤ cβ [35]. An intu-
itive explanation of Eq. 15 is that if the backlog seen by a tagged
packet [see Lindley’s equation (Eq. 8)] is larger than cd, then it
will take the FCFS server more than d time units to clear the
backlog before serving the tagged packet, and the delay bound
of the tagged packet will be thus violated in this case.

When the input is bounded by a set of random variable-
time interval pairs, the output traffic of a work-conserving
network element is also bounded by the same set of random
variables, but over a different (smaller) interval of time. With
this result, we can derive a flow’s characterizations along the
hops from its ingress point to the network node being studied.
Heuristic algorithms are presented in [35] to compute end-to-
end delay guarantees on a per-session basis, which, however,
usually give loose results as compared with simulation. Fur-
thermore, to use Eq. 15, we need to compute the convolution
of N random variables for each time interval tk, which results
in a high computation complexity [36].

H-BIND
The Hybrid Bounding Interval Dependent (H-BIND)
approach provides statistical QoS guarantees by exploiting the
random phases of deterministically constrained flows [20, 36].
In H-BIND, each session is regulated by a D-BIND EP and a
large number of flows are multiplexed at a network element.
When computing the delay distribution using Eq. 15, the
bounding random variables, Bi(tk), are assumed to be Gaus-
sian (reasonable when the number of flows is large), which is
fully determined by its mean and variance [67]. For Bi(tk), the
mean is calculated from the source’s D-BIND EP. Since there
are many arrival processes that conform to a D-BIND EP, the
variance σ2(tk) is computed using the arriving process that
maximizes it (i.e., an adversarial source).

In [20], Knightly also extended the FCFS stochastic bound
in Eq. 15 to the static priority case. Let there be P priorities,
Cp be the set of flows with priority level p, and the delay
requirement for priority p connections be dp. Then the delay
violation probability for a priority-p packet is bounded by [20]:

(16)

where βp is a bound on the priority-p busy period. This is sim-
ilar to the deterministic admission control test for static prior-
ity systems discussed earlier. However, the RHS of Eq. 16
now provides a bound on the delay distribution of priority-p
traffic.

For H-BIND, the Gaussian assumption eliminates the con-
volution computation required when Kurose’s bound is used.
Such an approximation can be quite accurate, considering the
large number of flows multiplexed at a core router. Moreover,
when used for admission control, H-BIND achieves band-
width utilization of up to 86 percent in a realistic scenario
[36], which is much higher than the 15 to 30 percent band-
width utilization achievable with deterministic EPs [22]. Such
sigificant gain is due to the fact that statistical multiplexing is
explored in H-BIND. In addition, the D-BIND/H-BIND
framework allows for the simultaneous support of hard and
soft QoS guarantees. With this framework, all the sources are
constrained by D-BIND EPs. Sources demanding determinis-
tic service are served with higher priority than sources choos-
ing statistical service.

It is also worth noting that H-BIND is essentially a single-
multiplexer analysis. In [20], Knightly discusses how to extend
this analysis to derive end-to-end performance bounds. Since
H-BIND explores statistical multiplexing gain, flow indepen-
dence is an important assumption, which may not hold true
when flows share a common buffer.9 Knightly suggests adopt-
ing delay-jitter control (or the simpler rate-jitter control) at
every network node, which decouples the network nodes
along an end-to-end path by reconstructing the sources’ origi-
nal traffic pattern at each hop [73, 74]. With this technique, if
a delay bound dh is provided at hop h with violation probabili-
ty εh, the end-to-end delay violation probability is found to be
Pr{De2e > Σdh} ≤ Πεh [20].

RATE VARIANCE ENVELOPE PROCESSES
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9 This problem is solved in [31] by adopting bufferless multiplexing sys-
tems.
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Rather than bounding the cumulative traffic A(t) itself, the
Rate Variance EPs are used to bound the statistical proper-
ties of A(s, s + t) as a function of the interval length t [36, 37].
The rate-variance of a flow,

(17)

describes the variance of a stream’s arrival rate over intervals
of length tk. This characterization captures the second moment
correlation structure of an arrival process. Note that it makes
no assumption on A(t) and allows for an arbitrary autocorrela-
tion structure of individual sessions. Using video traces as
examples, Knightly [36] shows that the RV(tk) curves of the
video traces can be bound or approximated using two or three
piecewise linear segments on the log-log scale.

For admission control tests, the Rate Variance EP of the
aggregate traffic Σi Ai(s, s + tk) can be approximated using a
Gaussian Envelope with variance Σi tk2RVi(tk) over intervals of
length tk. That is, the summations in the RHS of Eqs. 15 and
16 can be approximated with Gaussian random variables and
the probabilities computed using a Gaussian distribution with
the corresponding mean and variance.

The Rate Variance EPs have been shown to achieve very
high utilization in [12] as compared to other methods. Howev-
er, it is more difficult to enforce a flow to follow such EPs.
Reference [75] presents a measurement-based admission con-
trol scheme based on Rate Variance EPs, where the maximal
rate envelope of the aggregate flow is adaptively measured
over the currently admitted flows.

EFFECTIVE ENVELOPES

The class of effective envelopes are functions which upper
bound multiplexed traffic with high certainty [23]. As in H-
BIND, the traffic flows are assumed to be deterministically
regulated, e.g., by piecewise linear deterministic EPs, and pos-
sess several general properties, such as stationarity, indepen-
dence, additivity and subadditivity. 

Two types of effective envelopes are defined in [23], name-
ly, a local effective envelope and a global effective envelope.
Consider a set of flows C with arrival functions Ai(t). The
aggregate traffic is AC(t, t + τ) = ΣC Ai(t, t + τ). The local
effective envelope that upper bounds AC(t, t + τ) is a function
GC(.;ε) that satisfies

Pr{AC(t, t + τ) ≤ GC(τ; ε)} ≥ 1 – ε, ∀τ ≥ 0 and ∀t. (18)

That is, a local effective envelope upper bounds the aggregate
traffic for any specific (“local”) time interval of length τ [23].
Furthermore, it is a probabilistic bound: the aggregate traffic
is allowed to exceed the local effective envelope, but with a
small probability (at most, ε).

Global effective envelopes are defined for the same aggre-
gate traffic AC(t, t + τ), but are bounds for the arrival in all
subintervals [t, t + τ) of a larger interval. More precisely, a
global effective envelope for an interval of length β is a subad-
ditive function HC(.; β; ε) such that

Pr{EC(τ;β) ≤ HC(τ;β;ε), ∀0 ≤ τ ≤ β} ≥ 1 – ε, (19)

where EC(τ;β) is the empirical envelope of AC(t, t + τ), and β
could be an upper bound on the largest system busy period.
HC(τ; β; ε) is a bound for traffic for all subintervals of length τ
≤ β in the interval β, which is more stringent than local effec-
tive envelopes and leads to more conservative admission con-
trol [23].

For a given set of flows Ai(t) and their corresponding
deterministic EPs Â i(t), the effective envelopes can be com-

puted as follows [23]. First, the bound on the moment gener-
ating function of an individual flow is computed, which is
found to be a function of the corresponding deterministic EP
Â i(t). Due to the independence assumption, the bound on the
moment generating function of the aggregate traffic flow,
MC(s, τ), can be easily derived, as the product of those of the
individual flows. Second, applying Chernoff bound [see Eq.
13], we have

Pr{AC(0, τ) ≥ Nx} ≤ e–NxsMC(s, τ). (20)

Substituting the moment generating bound derived in the first
step, the local effective envelope can be obtained by solving
for Nx from Eq. 20.

Once the local effective envelope is derived, Boorstyn et al.
use a geometric argument to construct the global effective
envelope HC from the local effective envelope GC. Specifically,
they show that HC can be bounded by GC from both sides as

GC(τ;ε) ≤ HC(τ;β;ε) ≤ GC(τ′; ε′), (21)

where τ′/τ > 1 and ε′/ε < 1 depend on the interval β. It has
been shown that for ε sufficiently small and β not too large,
τ′/τ ≈ 1, and the resulting global effective envelope is reason-
ably close to the local effective envelope.

Effective envelopes thus derived can be applied to provide
statistical service assurances for various traffic scheduling
algorithms. In the following we use FCFS as an example;
other scheduling disciplines such as static priority or EDF can
be derived similarly and we refer interested readers to [23] for
these results. The schedulability condition for FCFS with a
statistical delay service Pr{D ≥ d} ≤ ε is

(22)

where t – τ̂ is the last time before t that the queue is empty.
That is, when a tagged traffic unit arrives at time t, it sees a
backlog of sup τ̂ {AC(t – τ̂ , t) – cτ̂ } [see the Lindley’s equation
(Eq. 8)]. To provide the required statistical service, the proba-
bility that the server can clear this backlog in d time units
should be no smaller than 1 – ε. Furthermore, this schedula-
bility condition can be approximated by10

(23)

From the definition Eq. 18, GC(τ;ε) < x implies that Pr{AC(t, t
+ τ) > x} < ε. Consequently, the schedulability condition can
be rewritten as

(24)

When the global effective envelope is used in admission con-
trol test, the schedulability condition is found to be

(25)

which has a similar structure to Eq. 24.
Finally, we use Fig. 7 from [23] to illustrate the perfor-

mance of several EPs discussed thus far in admission control.
In this example two classes of flows are multiplexed at a net-
work element with a service rate of 45 Mb/s. The delay
bounds are 100 and 10 ms for Class 1 and 2 flows, respective-
ly, and the delay violation tolerance is chosen to be ε = 10–6.
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10 This approximation is accurate if the arrivals follow a Gaussian process
[12, 23]. For general cases, the left-hand side (LHS) of Eq. 23 is an upper
bound for the LHS of Eq. 22.
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The admissible regions obtained with various EPs and the
static priority and EDF scheduling algorithms are plotted in
Fig. 7.

In Fig. 7, the admissible regions of peak rate allocation
and average rate allocation serve as benchmarks. The admissi-
ble region of any feasible algorithm should fall in between
these two regions. We can see the admissible region of deter-
ministic service is much larger than that of peak rate alloca-
tion. This is because with deterministic service, when the
instantaneous aggregate rate is large than c, the extra traffic
can be temporarily buffered, as long as they are served before
their delay deadlines. It can also be observed that the schemes
that explore statistical multiplexing gain, that is, EB-EMW
[26], EB-RRR [29], Bufferless MUX [31], and local and glob-
al effective envelopes [23], achieve much larger admissible
regions (indicating high bandwidth utilizations). The admissi-
ble regions for other probabilistic EPs that do not exploit sta-
tistical multiplexing gains, such as SBB, EBB, and Chang’s
log-moment generation bounds (although not shown in the
figure), are expected to lie between the deterministic service
curve and the EB-EMW curve in Fig. 7.

ENVELOPES FOR SELF-SIMILAR TRAFFIC

Since the seminal work [40], many empirical studies have
shown that network data and video traffic are LRD or self-
similar in that they exhibit high burstiness over multiple
timescales [38, 39, 41]. In [43], Norros introduces a framework
to model the connectionless data traffic using fractal Browni-
an motion (fBm) models. This framework inspire the Weibull
Bounded Burstiness EPs [34, 42] and is the basis for the fBm
EP [15].

WEIBULL BOUNDED BURSTINESS PROCESSES

In the past decade, tremendous effort has been made to build
traffic models that not only model the statistical aspect of self-
similar traffic, but also are manageable for traffic engineering.
The sum of exponentials model tries to model the LRD char-
acteristics within the traditional Markovian analysis paradigm,
while some other traffic models have been proposed to model
LRD and self-similarity in a more direct manner.

Previous work, such as [43, 76], shows that a single server
FCFS queue fed by self-similar traffic, such as fBm traffic, has
a Weibullian asymptotic tail. Motivated by this finding, and in
a way analogous to the EBB model, the Weibull Bounded

Burstiness (WBB) traffic model is proposed for fBm traffic
flows [34, 42].

Weibull Bounded (WB) and WBB processes with Hurst
parameter H are defined as a special type of SBB, with a
Weibullian bounding function f(σ) = φe–ασ2(1–H), where φ is
called the asymptotic constant and α the decay rate. This is
consistent with [76] that showed that the buffer overflow
probability of an FCFS queue fed with fBm traffic has the
same form as f(σ). Since WBB processes belong to the class
of SBB processes, the SBB calculus can also be applied to
WBB processes. Analytical results for GPS systems with WBB
traffic flows can be found in [34].

THE FBM EP

Consider a Brownian motion (BM) process A(t) with mean ρ
and variance σ2, an EP Â (t) that tightly bounds this process is
found to be Â (τ) = ρt + κσt{1/2}, where κ determines the
probability that A(t) exceeds Â (τ) at time t, that is, if Pr{A(t)
> Â (t)} = ε, then [67]: 

.
This approach can be extended to deal with fBm traffic.

Consider an fBm traffic flow AH(t) with mean ρ, variance σ2,
and Hurst parameter H. Fonseca, Mayor, and Neto [15] pre-
sent an fBm EP that bounds this fBm process:

Â H(t) = ρt + κσtH, for 1/2 ≤ H ≤ 1. (26)

Similarly, here κ also determines the probability that AH(t)
exceeds Â H(t) at time t, that is, if Pr{AH(t) > Â H(t)} = ε,
then 

.

Equation 26 has a similar format as Cruz’s EP Â (τ) = ρt + σ:
a constant rate process increased by a burst factor. But the
burst factor is a constant in Cruz’s EP, while an increasing
function of t in Eq. 26. Such a burst factor captures the bursty
nature of fBm arrival processes.

As in the effective envelope case, given a small ε, we can
compute an EP which is exceeded by the traffic flow with
probability ε. The computation is however much simpler, since
we only need to set

in Eq. 26. It is also worth noting the similarity between the
definition of fBm EPs and that of local effective envelopes
(Eq. 18). As a result, the schedulability conditions developed
for local effective envelopes (e.g., Eq. 24) can also be used for
fBm EPs for statistical service assurances. Furthermore, this
condition is exact (rather than an approximation), since the
traffic flow is Gaussian [12, 23].

THE FRACTAL LEAKY BUCKET

The Inadequacy of the Leaky-Bucket Regulator — An
ideal leaky-bucket regulator should accept all conforming
packets, but drop or mark nonconforming packets. It is shown
in [15] that it is very hard to choose the leaky-bucket parame-
ters regulating an fBm traffic flow. A set of chosen parame-
ters either gives low utilization, or results in extremely large
buffer and delay.

As an example, Fig. 8 plots the buffer size required, B,
under various utilizations, defined as the ratio of the mean
rate of the fBm traffic ρ to the long-term rate of the leaky-
bucket regulator r, that is, u = ρ/r. It can be seen that B
increases exponentially with u. To achieve an acceptable uti-

κ ε= −2 log

κ ε= −2 log

κ ε= −2 log

nFigure 7. Admissible region of multiplexing Class 1 and Class
2 flows with ε = 10–6, delay deadlines d1 = 100 ms, and d2 =
10 ms [23].  2000 IEEE.
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lization, an impracticably large buffer is required. The buffer-
ing delay in the regulator may also be too large to be accept-
able.

The Fractal Leaky Bucket — The inadequacy of a leaky
bucket stems from the inherent assumption that the traffic
behaves as a linear function of time, while the fBm cumulative
traffic is not a linear function of time, since its EP contains
the nonlinear term tH. To address this problem, Fonseca,
Mayer, and Neto propose a fractal leaky-bucket model [15].
The amount of traffic accepted by the fractal leaky bucket for
an fBm flow characterized with {ρ, σ, H} is given by

Â (τ) = ρt + κσtH + B. (27)

This fractal leaky bucket works as follows. At the begin-
ning, it monitors the cumulative traffic in a basic time window
of length τ time units. If the monitored amount exceeds the
average ρτ, the monitored amount will be compared with that
allowed by Eq. 27. If the monitored amount also exceeds the
allowed amount, the excess traffic will be marked and the
length of the time window will be increased by τ. Next, the
amount of cumulative traffic within this new time window
(starting from when the average was violated) is measured
and compared with the average ρ ⋅ 2τ. If again the average is
violated, the measured amount is again compared with that
allowed by Eq. 27. The excess traffic, if any, is decreased by
the traffic that is already marked, that will be marked, and so
forth. Whenever the monitored average falls below the aver-
age, the time window will be reduced to τ time units. We refer
interested readers to [15] for more implementation details
and a performance study of the fractal leaky bucket.

ENVELOPE PROCESSES FOR MULTIFRACTAL TRAFFIC

Norros’s fBm model is accurate for connectionless, or “free”
traffic, where network resources are unlimited and there is no
feedback control mechanism [43]. In the Internet, however,
the TCP traffic is dominant and incorporates flow and conges-
tion control. In addition, it has been shown that at the net-
work core, long-term correlations are dominant due to traffic
aggregation, while at the network edge, variabilities at small
timescales play a major role [16, 77, 78]. The multifractal traf-
fic model is proposed to capture both long-term memory and
high variability at small timescales [77, 79–81].

A stochastic process X(t) is multifractal if E|X(t + τ) –
X(t)|2 ~ C(t)|τ|2H(t), where 0 < H(t) < 1 is called the Holder
function. The multifractal Brownian motion (mBm) process is

a generalization of the fBm process. If in the neighborhood of
time t, an mBm can be approximated by an fBm with Hurst
parameter H(t), an EP for mBm increments can be derived as
upper bounds for such local fBm increments [16]:

.
(28)

When H(t) is a constant, Eq. 28 reduces to the fBm EP dis-
cussed earlier. The mBm EP bounds an mBm traffic flow as
Pr{A(t) > Â (τ)} = ε with 

.

The analysis for fBm EPs, such as deriving the backlog or
delay distributions and the timescale of interest, can be
applied to the mBm EPs with appropriate modifications [82,
83].

SERVICE CURVES

So far we have discussed EPs, deterministic or probabilistic,
that bound the cumulative arrival traffic. Such EPs are also
called arrival curves in the literature [13]. The current Internet
consists of heterogeneous network elements with diverse ser-
vice capacity and algorithms. The service a flow receives, as
the cumulative arrival itself, could also be a complex (or
stochastic) process. Naturally, a “dual” approach to bounding
cumulative arrivals is to adopt envelope processes that bound
the cumulative service a flow receives, which are termed ser-
vice curves in the literature [13, 17, 41, 44, 45, 47–56]. Such
service curves can abstract complex service disciplines,11 and
when combined with arrival EPs, can greatly simplify the
derivation of performance bounds at various network ele-
ments. More importantly, as we will show in this section, ser-
vice curves are very useful in deriving end-to-end performance
measures for QoS provisioning.

DEFINITION

Before we introduce the concept of service curves, we first
define a convolution operation of nondecreasing, right contin-
uous and causal processes (such processes have a zero value
for t < 0). Given two such processes A(t) and B(t), their con-
volution is defined as

.
(29)

Recall that in linear systems theory, convolution is defined as
A ⊗ B(t) ∫τ∈¡ A(τ) × B(t – τ) dτ. The new definition (Eq. 29)
actually replaces the integration with an infimum operation,
and the multiplication with a summation. For this reason, this
newly defined operation can be termed as a (min, +) convolu-
tion based on min-plus calculus [58]. Similarly, a deconvolu-
tion operation can be defined as

.
(30)

A graphical interpretation of Eq. 29 is given in Fig. 9. For
a fixed value of τ, the graph of A(t) + B(t – τ) versus t is
obtained by shifting the B(t) curve from the origin to [τ, A(t)].
The convolution is obtained by taking the lower bounding
envelope of all such translations.

A B t def A t Bx ( ) ( ) ( ) .  sup
τ

τ τ
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+ −{ }
¡

A B t def A B t
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κ ε= −2 log

ˆ( ) ( ) .( )A t p H x x dxH xt= +{ }−∫ κσ 1
0

11 The time-varying nature of wireless links also provides a natural appli-
cation of service curves [84].

nFigure 8. The trade-off between buffer size (B) and utilization
(u = ρ/r) when using a leaky bucket regulator for fBm traffic.
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Now we are ready to define the service curve for a network
element [45]. Consider a network element serving a cumula-
tive traffic flow of A(t) and generate an output process of
B(t). A causal process S is a minimum service curve if the
departure process satisfies B(t) ≥ A ⊗ S(t), and a causal pro-
cess S

–
is a maximum service curve if B(t) ≤ A ⊗ S–(t). Thus S(t)

provides a lower bound on the cumulative service the traffic
flow receives, while S

–
(t) provides an upper bound on the

cumulative service the traffic flow receives. This is analogous
to linear systems such as a low-pass filter, where the response
is the convolution of the input signal and the impulse response
h(t) of the system.

APPLICATION OF SERVICE ENVELOPES FOR
DETERMINISTIC SERVICE GUARANTEES

Among the two types of service curves, minimum service
curves play a larger role in service assurance since, combined
with arrival EPs, they can provide upper bounds on the QoS
performance measures. Consider a network element with
cumulative arrival EP Â (d) and a minimum service curve S(t).
As illustrated in Fig. 10, the maximum delay dmax is equal to
the maximum horizontal distance between the two curves, the
maximum backlog qmax is equal to the maximum vertical dis-
tance between the two curves, and the time instance when the
two curves intersect d provides an upper bound on the system
busy period.

This collection of results, including the input/output char-
acterization, is termed deterministic network calculus [13, 18,
19, 21, 50, 57]. We use the notation in [17] and summarize the
key results in the following. Consider a network element with
a minimum service curve S(t). The cumulative arrival A(t) is
bounded by its deterministic EP Â (t), and the cumulative
departure process is B(t). The following hold:
• Output Envelope: The function B(t) = ÂxS(t) is an enve-

lope for the departure process, in the sense that, for all t,
τ ≥ 0, 

B(t + τ) – B(τ) ≤ B(t). (31)

• Backlog Bound: An upper bound for the backlog, denoted
by qmax, is given by

qmax = ÂxS(0). (32)

• Delay Bound: An upper bound for the delay, denoted by
dmax, is given by

dmax = inf{d ≥ 0 | ∀t ≥ 0 : Â (t – d) ≤ S(t)}. (33)

Given the notion of service curve, these results can be easi-
ly extended to end-to-end performance bounds. For example,
consider the guaranteed service adopted by the IETF Intserv
working group [5]. The source describes the offered traffic in
terms of an arrival EP and requests a lossless service with a
fixed upper bound on end-to-end delay. Each of the routers
along the path allocates network resources (bandwidth and
buffers) to serve this session. Such a service can be modeled
as a flow traversing a sequence of service curve elements [45]. 

Let there be n network elements. Each element i has a
minimum service curve Si(t), a maximum service curve S

–
i(t), is

fed by the departure process Bi–1(t) from the upstream ele-
ment, and generates a departure flow of Bi(t). Consider the
output of the last network element Bn(t). From the definition
of minimum service curves, we have

Bn(t) ≥ Bn–1 ⊗ Sn(t)
≥ (Bn–2 ⊗ Sn–1) ⊗ Sn(t)
≥ …
≥ A ⊗ (S1 ⊗ S2 ⊗ … ⊗ Sn)(t).

Similarly, for the maximum service curves, we can obtain Bn(t)
≤ A ⊗ (S

–
1 ⊗ S

–
2 ⊗ … ⊗ S

–
n)(t). 

Let Snet(t) =def S1 ⊗ S2 ⊗ … ⊗ Sn(t) and S
–net =def S

–
1 ⊗ S

–
2 ⊗ …

⊗ S
–

n(t). With the use of service curves, not only the service
process at a network element can be abstracted, but also the
the entire path (or the network cloud) can be modeled with a
minimum network service curve Snet(t) and a maximum net-
work service curve S

–net(t). End-to-end performance bounds
can be easily computed by plugging in the network service
curves into Eqs. 31, 32, and 33, as in the single-network-ele-
ment analysis.

STATISTICAL NETWORK CALCULUS

As in the arrival EP case, service curves can also be used to
bound the service a flow receives in the probabilistic sense.
This approach has been explored by several researchers. In
[85], Cruz introduces a probabilistic service curve which allows
violations according to a certain distribution. A statistical net-
work calculus for the class of “dynamic F-servers” was hinted
at in [14], and a family of “statistical service envelopes” is
defined in [53] to lower bound the service received by an
aggregated flow.

In [17], Burchard, Liebeherr, and Patek define a (mini-
mum) effective service curve, given by

Pr{B(t) ≥ A ⊗ Sε(t)} ≥ 1 – ε. (34)

nFigure 9. A graphical interpretation of the convolution opera-
tion A ⊗ B(t).
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The effective service curve Sε(t) bounds the service a single
flow receives with high certainty. Using effective service
curves, a set of statistical network calculus results are devel-
oped in [17]. We use the notation in [17] and summarize the
main results in the following. Given an arrival process A(t)
conforming to a deterministic EP Â (t), and given an effective
service curve Sε(t), the following hold:

• Output Envelope: The function ÂxSε(t) is a probabilistic
bound for the departures on [0, t], in the sense that, for
all t, τ > 0,

Pr{B(t, t + τ) ≤ ÂxSε(τ)} ≥ 1 – ε. (35)

• Backlog Bound: A probabilistic bound for the backlog is
given by qmax = ÂxSε(0), in the sense that, for all t > 0,

Pr{q(t) ≤ qmax} ≥ 1 – ε. (36)

• Delay Bound: A probabilistic bound for the delay is given
by dmax = inf{d ≥ 0 | ∀t ≥ 0: Â (t – d) ≤ Sε(t)}, in the
sense that, for all t > 0, 

Pr{d(t) ≤ dmax} ≥ 1 – ε. (37)

Furthermore, consider a flow A(t) that traverses K network
elements in series, each having an effective service curve
Sk,ε(t). Then, for any t ≥ 0,

(38)

where a > 0 is an arbitrary parameter, and δτ(t) is an impulse
function which is ∞ for t > τ and 0 for t ≤ τ. 

It is worth noting that when ε = 0 (and by letting a → 0 in
Eq. 38), these results reduce to the deterministic network cal-
culus discussed in the previous section. These are elegant and
important results for end-to-end statistical QoS provision. We
refer interested readers to [17] for proofs and other details,
and to [46, 51] for the latest advances along this line of work.

CONCLUDING REMARKS

In this article we have surveyed various EPs proposed in the
literature over the past 15 years, as well as their applications
in QoS provisioning. The EPs we have discussed include the
class of deterministic EPs for deterministic service assurance,
the class of probabilistic EPs for statistical service assurance,
the class of EPs for self-similar traffic flows, the class of ser-
vice curves. We also reviewed the results from deterministic
network calculus and statistical network calculus.

A summary and qualitative comparison of the EPs exam-
ined in this article are provided in Table 2. These EPs differ
in many aspects and their efficiency and accuracy heavily
depend on the traffic assumptions. Generally, deterministic
EPs are appealing because they are simple in implementation,
while probabilistic EPs are more efficient in utilizing network
resources. Furthermore, statistical multiplexing can achieve
significant improvement in resource utilization, especially
when the number of flows is large. Indeed, statistical multi-
plexing is very useful in a number of contexts, including both
wired and wireless networks. Therefore, a promising direction
is to use deterministic EPs to regulate flows at the network
edge, and statistically multiplex regulated flows within the net-
work for statistical service assurance. Although it is also possi-
ble to statistically multiplex flows regulated by probabilistic
EPs, the margin for further improvement may be small. As

can be seen from Fig. 7, statistical multiplexing of determinis-
tically regulated flows has already achieved a utilization very
close to that of average rate allocation.

Currently there is considerable ongoing research on QoS
issues in several new networking environments, such as wire-
less access networks (including 4G wireless networks, wireless
mesh networks, mobile ad hoc networks, and wireless sensor
networks), MPLS networks, and P2P networks. These net-
works bring about some interesting problems and unique diffi-
culties for QoS provisioning. For example, a wireless link has
a time-varying capacity subject to fading and interference,
which is quite different from wired links with a fixed capacity.
Wireless transmissions also suffer high loss rates due to trans-
mission errors, which is also quite different from Internet
links where buffer overflow is considered as the main cause of
loss. Furthermore, user mobility also introduces more fre-
quent topology change in such networks. As another example,
the logical topology in a P2P network is quite different from
the traditional “edge-core” architecture under which most
QoS mechanisms/architectures are developed. How to adapt
QoS mechanisms in such environments still remains open,
since all these issues need to be addressed in the problem for-
mulation.

Another promising direction for future research is cross-
layer design and optimization. Most existing QoS mechanisms
are developed under the layered protocol architecture.
Although leading to simple independent implementations, this
“layered” approach also results in suboptimal application per-
formance. Breaking the barrier among the layers, combined
with jointly optimizing the QoS mechanisms/operations across
multiple layers (e.g., directly optimizing multimedia replay
quality via the resource management, adaptation, control, and
protection strategies available at the lower layers of the stack)
has the potential of “squeezing the most” out of resource-con-
strained wireless networks, which are much more unreliable
than their wired counterparts. We believe this survey can be
useful for research efforts along these directions.
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