A DELAY MODEL FOR A FRAME RELAY SWITCH *

L. Po, P. Sarachik and S. Panwar
Polytechnic University
Center for Advanced Technology in Telecommunications
333 Jay Street
Brooklyn, N.Y. 11201

Abstract

In this paper, we model a frame relay switch using a cyclic
server queuing system for the switch module. We present two
improved methods for the approximation of the waiting time
delay for the cyclic server queuing systemn. The four traffic
parameters (the first and second moments of the packet inter-
arrival time and packet length) at the output of the switch are
derived, thus the QNA method can be used for the network
analysis.

1 Introduction

Frame relay service is an ISDN packet-mode bearer service
for data communications. The frame relay switch performs
the core function of the LAPD data link layer protocol, in-
cluding frame validation, error detection, virtual circuit mul-
tiplexing/demultiplexing and switching. In a frame relay net-
work, the full LAPD protocol is performed only at the end
nodes. Intermediate nodes merely detect errors and perform
the switching function for transit packets. Many papers have
discussed the architecture and the application of frame relay
networks (Chen et al. 1989; Marsden 1991; Cole 1988). The
modeling of the frame relay switch should be based on this
two layer functionality.

A good model for a frame relay switch is important for net-
work implementation. It can be used to analyze and predict
the packet delay and packet loss performance of a network,
and in routing Permanent Virtual Circuits (PVCs).

Modeling the switching functionality (i.e., the switch mod-
ule) is the core of the frame relay switch model. For the
class of frame relay switches we considered, the switch module
could be modeled as a non-exhaustive cyclic service queueing
system as was discussed in (Cole 1988). Many papers have
contributed to modeling non-exhaustive cyclic service queues.
Only approximate results are available.

*This work was supported in part by NYNEX Science and
Technology and by the New York State Foundation for Science
and Technology as part of its Centers for Advanced Technology
Program.
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A basic approach we used in the modeling is the QNA
network analysis method (Whitt 1983), which can analyze
the delay performance of GI/G/m queues and networks. In
the QNA method, the nodes are analyzed as GI/G/m queues
characterized by the first moments and the squared coeffi-
cients of variation (a variability parameter) of the packet
inter-arrival times and service times. Traffic streams, each
with those four parameters, arriving to a node are combined
and form the combined traffic parameters to the node. The
service discipline is first-in first-out. The approximate mean
waiting time of the node can then be calculated.

Departure traffic parameters at the output of a given node
are estimated, and these are input parameters to the following
nodes. If there is no loss in the queueing system, the packet
rate, the meari packet length and the variability parameter
of the packet length are the same as those of the input traf-
fic parameters, but the variability parameter of the packet
inter-departure time is changed. This can be estimated by
Marshall's formula (Marshall 1968).

If the departure traffic is split into many traffic streams
after the queue service, the QNA method also gives a way to
calculate the parameters for each of the split traffic streams.

A frame relay switch can be modeled as a multi-queue
cyclic service system. The QNA method cannot solve this
type of queune. In this paper, we discuss a systematic anal-
ysis for the delay performance of a frame relay switch and
present a method to estimate the traffic parameters at the
output of the switch, which are the input parameters to the
downstream switches.

In the second and third sections of this paper, we describe
the switch model and the input traffic parameters. The delay
analysis of the input module and the output module of a
frame relay switch is discussed in sections 4 and 6. In section
5, we discuss the delay models for the switch module, which
is basically a cyclic service queue systern.
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Fig. 1 Equivalent Model for the Frame.Relay Switch

2 Model Description

A typical frame relay switch consists of three parts: an input,
a switch and an output module. An input packet (or a frame
of data) from a customer premises equipment (CPE) access
line or a trunk line to the switch, is detected and verified
by the packet processor in the input module. Valid pack-
ets are forwarded to the transmit buffer and wait for the
switch server to switch them to their destination output mod-
ule. Packets arriving at the output module are stored in the
transmit cache for the packet processor to perform the packet
validation. They are then multiplexed and transferred to the
output line. All input and output lines are T1 lines, which
can be of three different types; 24 channelized 56kbps chan-
nels, four partially channelized 384kbps channels or a single
1.344 Mbps channel. The switch discipline is round robin and
at most one packet is switched when a queue is polled. A
queuing model for the frame relay switch is shown in Fig.1.
There are three queues which must be modeled; the input
queue, the switch queue and the output queue. There are
also some packet transfer delays in or between the modules
which are proportional to the packet size and can be placed
anywhere in the queueing model. For simplicity, we place all
transfer delays which oceur before the switch module into the
input module and the transfer delays which occur after the
switch module into the output module. The transfer delays

at the input and output modules are assumed to be equal,
because similar data transfers are necessary before and after
the switch module.

3 Input Traffic Description

Traffic to a switch node either comes from a previous node
through a T1 trunk or enters at the node through a fully or
partially channelized or a full T1 line from CPEs. A source
CPE sends its traffic through the network via a Permanent
Virtual Circuit (PVC) to the destination CPE. PVC k (de-
noted by PV Cy), which originates at input line (or channel)
i of a node and goes to output line (or channel) j, has four
parameters: the packet arrival rate ok, the squared coeffi-
cient of variation of packet inter-arrival times vik, the mean
packet length E{Lx} and the squared coefficient of variation
of the packet length v%,{ Those four parameters are observed
before the traffic is transmitted to the input module, hence,
when many PVCs exist in an input line, the input traffic is the
PVCs’ combined traffic with four parameters: the packet ar-
rival rate Ay;, the squared coefficient of variation of the packet
inter-arrival time v, , the mean packet length B{L.;} and
the squared coefficient of variation of the packet length vf .
A simple way to estimate the parameters of the combined
traffic is by the QNA method (Whitt 1983).
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If an input line is a trunk or a full T1 access line, all PVCs
coming through the line are merged in the line with a line
service rate of 1.344 Mbps.

When PVCs come through channel m of input module
1, similarly, the combined four parameters, Aiim, E{L1iim},
vy, and v} . for that channel can be found by consider-
ing each channel as an input line with the service rate of the
channel. The channel traffic streams are further combined
and form the traffic of input module 3. Thus, there are two
merges for the input traffic through channelized channels.

4 Delay Model of the Input
Module

An input module i has a packet processor, which pro-
cesses each incoming packet with a constant processing time
E{X1:}. The load on the queue is p;; = MiE{X1:i}. The
waiting time of the packet processor is (Whitt 1983)

puB{Xu}(vd,, +v%,,)
E W,’ o 5 1% 1s
{ 1 } o 2(1 — 1)

2(1 - plt)(l - ,U%“)2
3p1‘(v'?'1i + vg(u)
91 =1if vf, > 1 and the variability parameter v, = 0 in

this case.

1)

where g1; = exp (— ) if v7,, < 1 and

The transfer delay is proportional to the packet size. Let
the transfer rate be R, which depends on the switch fabric
and can be measured or calculated on a real system. Because
the transfer rate is very high, there is no queuing delay but
there is a delay in addition to the packet delay. If there are M
transfers in the input module, the total input transfer delay
is ML/R:, where L is the packet length.

The packet departure rate and the packet length param-
eters after the processor are the same as for the input to
the processor, but the squared coefficient of variation of the
inter-arrival time has been changed. By the QNA method,
the variability parameter, v3, , is estimated by

(2)

The four parameters for the input to the switch are then
determined.

v%h. =~ (1- pi"‘,')v%h,.

5 The Switch Module

The switch module is modeled as a non-exhaustive cyclic
Queue with at-most-one packet served per polling of the
queue. In this part, we combine some basic methods and
try to develop a better delay model. We first discuss the
switch model for Poisson input traffic and then modify it for
general input traffic.

9.1 The Conditional Cycle Times

Define C{’ to be the conditional cycle time random variable
for queue 1, given that a packet from queue 1 is served in the
cycle; Cf to be the conditional cycle time random variable
for queue 7 given that no packet from queue i is served in the
cycle.

Kuehn 1979 had an approximation method for mean cyeclic
times, ¢ = E{C/'} and ¢, = E{Ci}. Let d.; and c; be
Kuehn's approximate values, then

7 8o + h;

'~ 3

¢ 1—po+p; ®)

’ 30

[ e 4
1 - po+pi @)

where p; = XA is the load contributed to the switch by the
queue ¢ traffic and pp = Zf’:l pi is the total switch load. Ay
is the packet arrival rate to the switch input queue 7, which
is equal to Ay, if there is no packet loss at the input module;
hi is the average packet service time, which is equal to the
packet length E{L,;} over the switch rate Ry; and s is the
sum of the mean polling times s; for each queue i,

Equations (3) and (4) give extreme approximations for the
conditional cycle times. If ¢y = 30/(1 = po) is the average
cycle time, the relationship among the cycle times is

CﬁiZC'iIECOZCQZCL.'- (5)
We carmr find another approximation method for ¢/ and .
Let ¢Z; and ¢, be these approximate values where

C’éi = 80+ h;+ Z 5;"}1.,' (6)
J#d
Chi = 8o+ Z 85hs. (7
I

Here 6} = Az;ck; is the probability that a packet from queue
J is served in the cycle, given that a packet from queue j is
served in the previous cycle; 6 = Agjch; is the probability
that a packet from queue J is served in the cycle, given that
no packet from queue j is served in the previous cycle.

The solutions to the linear equations (6) and (7) are

oo S0t hi(l—di) +ds
= 1~ po+pi(l—d;) +dy

i = >
= 1~ po+pi(1 —d1) +dy

N ) N 2
= 2 : Pi_ . gy = 2 : B -
where d]_ = j=11_-+-—p—;’ d2 = j=11+p_7‘ and ds =

N Py
Z hips - Equations (8) and (9) also are upper and lower
=114 p;

®)

(9)

bound approximations for the conditional cycle times.

By combining Kuehn'’s approximations and our approx-
imations, a better approximation for the conditional cycle
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times can be acquired. Let € = min(Azcl;, Az, 67,1)
and €}; = min(max(Ag;cl, ;, A2icj, 65), 1), which gives a bet.
ter approximation for the conditional probabilities that a
packet from queue 7 is served in a cycle, given that a packet
from queue 7 is served in the cycle or given that no packet
from queue 7 is served in the cycle. The approximations for

the cycle times are

i = sothi+ ) ey (10)
i
c;,- = 8¢+ Z G;jhj (11)
i

which give better approximations for the conditional cycle
times, and can improve the queuing delay approximation.
Let cf_,'_.(..z) and cgf) be the second moments of these condi-
tional cycle times, then (Kuehn 1979)

N
L =D (o — D)+ AP n2 4 S (A — th2y 4
i=1 I
(12)
N
k=Y (s - %) + D o€ - Er) e (13)
j=1 S
where s§.2) is the second moment of the polling time and hfz)
is the second moment of the packet service time for the ith
queue of the switch, which is the second moment of Lyi/R..

In the above discussion, we assume that the switch is sta-
ble. For unstable systems, an additional step must be taken
to identify the unstable queues and treat them differently.

5.2 The Mean Waiting Time of The
Cyclic Queues

The mean waiting time of Poisson input traffic queuing sys-
tems depends on the mean residual time and the traffic load.
A packet upon arrival to an input queue will find either that
there is a head-of-line (HOL) packet or there is none. It
sees different residual times in those two cases. Based on
the renewal theory and M/G/1 queue theory, we can derive
Kuehn’s formula for the mean waiting time for queue i,

c. .

Wyl =2 225

E{Wy} 20, + 20— ) (14)

Kuehn used his approximations for the first and second mo-

ment of the cycle times and had a delay approximation for-
mula.

Another method developed by Boxma and Meister (1986)
is based on two assumptions:
L. pi = Azic; is the utilization observed at queue i
2. All arrival packets see approximately the same mean resid-
ual time r.
The second assumption is good if the traffic load is light or

the queues are not very unbalanced, otherwise a large error
exists. Based on those assumptions, the mean waiting time
is approximated by
r
E Wyl = oo
BM{Wa} T ] (15)
where r is a parameter to be determined. Boxma and Meis-
ter used the conservation law, which was first developed by
Watson (1984), to evaluate r. This gives r and the waiting
time approximation for queue % as

1-po
RS CnE (16
(1= po)po + N 2 )
1~ po +p;
E W,’ o
oot {Wa} 1~ po ~ Aaiso (17)
where N
i Aash(® @ N
Cne =po Lizi Aoty 2

2(1 ~ po)

Equation (17) gives a closed form formula for the queue
waiting time approximation which, for moderate switch loads
and slightly unbalanced queues, gives more accurate results
than the approximation for (14) found by Kuehn's method.
Later, some numerical results will show that when the switch
load is high and queues are very unbalanced (the load of the
maximally loaded queue is more than twice the load of the
minimally load queue), large errors can exist, which are even
worse than Kuehn'’s approximation. The errors produced are
due to the errors of the two assumptions. If either one could
be improved, the errors would be reduced.

0. % 2
+P0280 + 2(1 —po) (po+;p,)

The first method is to use ¢, as the approximation for
the conditional cycle time ¢/ instead of ¢, in (15), then the
residual time and the mean waiting time are approximated
by

1-po)C,
ro~ — (1 - po)CnE (18)
T Pi(1 = po — Agis0)
i=1 1“’\2i‘-"a'fi
E W.' 3 To .
1{Wai} g vy (19)

Equation (19) gives a better approximation than (17), espe-
cially when the switch load is high and queues are highly
unbalanced, due to a more accurate approximation for the
mean cycle time ¢/’

A second method is to use equation (14) as the approx-
ir;x%tion for zthe mean waiting time by substituting ¢/, <,
/® and ¢® with iy Covgy P and . Let the waiting
time be Ex {Wa;}. For different queues, we can have different
residual times instead of approximating all by r as in Boxma-
Meister’s method. Let E2{Wu} be the approximation of the
Iean waiting time by this method, then

Ez{Wz,'} =b~E’K{W2,-} (20)
where b is a parameter to be determined for matching the job
estimated by E2{Wy} with the total job calculated by the
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Load Simulation Method 1 Method 2 BM Kuehn
0.2 .4047(,012) 4077(.74) .4135(2.1) 4073(.64) .3860(-4.6)
0.4 19959(.029) :9975(.16) 1.026(3.0) 9932(-.27) .8683(-13.)
0.6 2.548(.068) 2.479(-3.) 2.562(.54) 3.436(-4.4) 1.941(-3.1)
0.8 11.13 (.25) 10.40 (-3.) 10.62(-2.) 9.602(-10.) 6.917(-35.)
0.85 22.18 (.65) 21.62(-2.5) 21.94(-.1) 18.82(-15.) 13.43(-39)
0.9 139.9(23) 163.2 (17.) 164.4(18.) 95.7(-32) 91.7(-34)
Table 1: Waiting Times for the First Queue
Load Simulation Method 1 Method 2 BM Kuehn
0.2 .3814(.013) 3.800(-.5) .3766(-1.3) .3801(-.34) .3576(-6.2)
0.4 .8225(.031) .8383(1.9) .8219(-.07) 8411 (2.3) 7282(-11)
0.6 1.651(.044) 1.735(5.1) 1.692(2.48) 1.768(6.7) 1.421(-16.)
0.8 3.469(,086) 4.325(25.) 4.272(23.5) 4.935(42.) 2.800 (8.7)
0.85 4.955(.038) 5.959(40.) 5.931(39.0) 7.790(83.1) 5.856(37.6)
0.9 5.335(.056) 9.006(69.) 9.069(70.) 22.83(328.) 11.88(123.)
Table 2: Waiting Times for the Second Queue
conservation law. where g5 = exp (_ 21 - p20)(1 — v%“y) if v4_ < 1 and
CNE 3p2i(v’%2,. + ‘U%“) Lo
= (21) g2i = 1 if v%z‘ > 15 pai = lg;cd; is the utilization observed at

B Zfix pi(l = laico) Ex {Wai}

When b is found, the mean waiting time Ey{W,;} is given by
equation (20). In most situations, the second method gives
better approximations than the other methods.

Tables 1, 2, 3 and 4 show some numerical results for delay
in a 4 queue system with constant polling times s; = 0.05
and exponential packet service times with means h; = 1.
The arrivals to the queues are Poisson with average rates
ly = 2y = 4l3 = 4l4. These values were chosen to yield
an unbalanced system for which the load at queue 1 is twice
that at queue 2 and four times the load at queues 3 and 4.
Tables 1, 2 and 3 give the waiting time of the first queue,
the second queue, and the third and fourth queues respec-
tively. The first column is the total switch load. Simula-
tion results from a special purpose simulation program are
given in the second column, with the 95th percentile confi-
dence interval range shown in parentheses. The mean waiting
time delay for each method and their percentage errors (com-
pared with the simulation results) are shown in the remain-
ing columns. The results show that improved methods one
and two give better waiting time approximations than both
Boxma-Meister’s method and Kuehn’s method. The differ-
ence between method 1 and 2 is not large.

In the above discussion, the mean waiting times of the
cyclic server queues are for Poisson arrival traffic, If the in-
put traffic is general with two parameters, [y; and ”%‘2.4 the
formula for the waiting time must be modified. According to
the GI/G/1 theorem (Whitt 1983), the mean waiting time,
Eq{Wa}, for general input traffic can be approximated by

cg_’ipz": (v%g,‘ -1 )

Eq{Wai} = go (

queue ¢. Equation (22) gives us the waiting time for general
input traffic. ‘ :

Table 4 shows the results for the same system as Tables 1
to 3 except that the arrivals are not Poisson. The interar-
rival times have a squared coefficient of variation equal to 2.
For simulation, « hyperexponential distribution was used to
generate the interarrival times. No comparison can be made
to the Kuehn and Boxma-Meister results since these are not
applicable to non-Poisson traffic. The results are not as ac-
curate as for the Poisson arrival case, but are adequate for
engineering purposes.

6 Model of the Output Module

Packets coming to the output module go though two tandem
queues for service. One is for packet processing and the other
is at the output line. Packet processors perform the same
function as in the input queue module. The output line is a
Ti line, which may be partitioned into channels. Therefore,
there are three possible transmission rates, 56 kbps, 384 kbps
or 1.344 Mbps for the output transmission. The queueing
model is simple. The only problem is to calculate the four
incoming traffic parameters to each output module. We will
estimate the traffic parameters to the output queues in the
following subsections.

6.1 Traffic Parameters for the Output
Modules
Let:

ls; be the packet arrival rate to the packet processor queue
of the output module 7;
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Load Simulation Method 1 Method 2 BM Kuehn

0.2 .3780(.013) .3665(-3.0) .3584(-5.2) .3671(-2.9) .3413(-9.7)

0.4 .7487(.024) .7655(-2.2) 7277(-2.8) .7709(-2.9) .6478(-13.)

0.6 1.307(.023) 1.441(10.3) 1.336(~2.2) 1.484(13.5) 1.140(-13.)

0.8 2.259(.022) 2.906(28.6) 2.655(17.5) 3.422(54.8) 2.567(13.6)

0.85 2.569(.024) 3.621(40.9) 3.314(29.) 4.911(91.2) 3.653(42.2)

0.9 2.910(.027) 4.723(62.) 4.351(50.) 12.31(323.) 6.270(115.)

Table 3; Waiting Times for the Third and Fourth Queues

Load Q1 Sim Method 1 | Method 2 Q2 Sim | Method 1 | Method 2| Q3,4 Sim | Method 1 | Method 2
0.2 | 560(.015) | 510(-8.9) | 516(-7.9) | 446(.016) | 433(-2.9) | .430(-3.7) | .407(.024) |.393(-3.4) | .385(-5.0)
0.4 | 1.66(.067) | 1.32(-21) | 1.35(-19) | 1.11(.023) | 1.01(-0.0) | .990(-11) | .887(.016) |.850(-4.1) | .812(-8.4)
0.6 | 5.74(.226) | 3.39(-41) | 3.47(-40) |2.74(:084) | 2.19(-20) | 2.14(-22) | 1.71(.032) | 1.66(-2.9) | 1.55(-9.1)
0.8 [29.7 (6.17) | 14.4 (-62) | 14.6(-51) |6.98(:628) | 5.73(-18) | 5.67(-19) | 3.24(.004) | 3.47(7.1) | 3.22(-.62)
0.85 [ 61.3 (8.31) | 29.8(-51) | 30.1(-51) | 9.48(451) | 7.96(-16) | 7.03(-16) | 3.80(.089) | 4.36(15) | 4.05(6.6)

Table 4: Waiting Times

E{Ls3;} be the average packet length of the traffic to the
queue;

viaj be the squared coefficient of variation of the packet
length;

”%‘3,- be the square coefficient of variation of the packet inter-
arrival time to the queue.

Still assuming that all packets destined to output queue j
arrive there without loss, then (Whitt 1983)

l3y; = ay (23)
PV Cy € output j
E{Ly;} = > Blliox/lay  (24)
PV (€ output j
2 2
2 2 ay B {Lk}(l‘f‘va)
UXas = Vlg; = Z l3;E{L3;}? L (25)

PVCL€ output j

These three parameters are calculated independently of the
previous queue information, but v%sj depends on that infor-
mation and requires more calculation. It is derived in the
following steps.
a). Let U.ZS‘W,- be the squared coefficient of variation of the
input queue i packet inter-departure time at the output of
the switch module. Then,

Viw, = P3ivy; + (1 = phi)vhy,. (26)
b). Traffic from input queue 7 will split among the output
queues. The probability, vi;, that a packet from queue i goes
to output queue j is, approximately,

ZPVCkE(i,j) k.

I 27)

Yi; =

where (1,7) is defined to be a path from input queue i to
output queue j. Thus, the variability parameter, 'U?qu/'.j, of

for Non-Poisson Arrivals

the packet inter-arrival time from mput queue ¢ to output
queue j is, :

vBwi, = 1= 75 + visvéw,. (28)
c). The traffic from input queues to the output queue j is
combined and forms the traffic to the output module. If we
assume that the traffic from different queues are independent,
we can use the QNA’s traffic-merge method to combine the
traffic.

Let 6;; be the fraction of traffic from input queue i to
output queue j, that is

Q)
PVCe(i,j)

0“, = { 3

(29)
Hence, the variability parameter of inter-arrival to the output
module j is

N
'U%"aj = (1 — wy;) + ws; Z(oijvgwﬁ)

t=1

where ws; = 1/[1 +4(1 — pa;)? ((ZN 6%)7' ~1)] and ps; =
l3; BE{Xa;} = la; E{X1;} is the load of the output processor j.
The input traffic parameters to the output packet processor
are then completely specified by formulas (23) through (30).

(30)

6.2 Delay of the Output Module

There are five sources of delay for an output module: packet
processing delay, waiting time delay in the receive cache,
packet transfer delay, waiting time delay for multiplexing and
transmission and the transmission delay.

The first queue in the output module is the packet proces-
sor queue, which performs the same function as in the input
queue. Changing the subscript 1i of (1) into 37, gives the
formula for the mean waiting time, E{Ws3;}, of the output
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packet processor. The transfer delay is the same as that of
the input module. The packet inter-departure variability pa-
rameter, U%‘j after the packet processor can be calculated,
which is an input parameter to the transmission queues. Due
to the lossless assumption, the other parameters for transmis-
sion queue j (i.e., l4;, E{L4;} and v%M) are the same as those
for the input to the output packet processor (i.e., the values
given by (23) to (25)). E{Wy;} is then calculated using (1)
with these parameter values,

The last queue of the frame relay switch is at the output
transmission line. The transmission line can be a full T1
line or channelized. In the former case, the arrival traffic is
known, it is a simple GI/G/1 queue; in the later case, the
traffic to output module j is split onto the channels. We
consider that it is randomly split. The QNA method can be
applied to calculate the parameters and delays of the traffic
streams.

This completes our discussion of the delay model for the
output modules.

7 Switch Delay of PVC Packets

The PVC packet delay through the switch is defined to be
the interval from the time a PVC packet arrives to the input
module of the switch till it leaves the output module of the
switch. If PV Cy goes through the switch via input module 4
and the output module j, the average switch delay, E{Dx}, of
the PVC\ packets is the sum of the waiting time delay and
the service time delay of the passed queues in the switch.
The average waiting time delay is the same for any PVC
going through the same path; but the service time delay is
different for PVCs whose traffic has different average packet
lengths. Let E{W;;} be the waiting time delay of the path
from input module ¢ to output module j and E{Sy} be the
average service time delay for PV C) packets going through
the switch. Then, if PV C}, is via path (3, j), the PV Cy packet
delay is,

E(Di} = B{W}+B(si)
= E{Wu}+ Ec{Wu} + E{Wy;} + E{W,;}
+B(Xu} + BUXo) + B + -+ 2 )

The first four terms are the waiting time delay; the remaining
terms are the service time delays. E{Xy;} and E{Xs;} are
due to the input and the output packet processors; R, is the
packet transfer rate of the input or output modules; R,, is the
service rate of the cyclic queue switch and Ry; is the service
rate of the transmission line.

8 Conclusion

Frame relay service is PVC-oriented. PVC traffic goes
through a predetermined path. A frame relay switch con-
tains three different type of modules, the input module, the

switch module and the output module.

We modeled each module by using infinite buffer queues
and analyzed the delay performance of each queue. The ba-
sic approach used in the analysis is the QNA method, which
is based on two traffic parameters, the packet rate and the
squared coefficient of variation of the packet inter-arrival time
and two service parameters, the mean packet service time
and the squared coefficient of variation of the packet service
time. The main problem is how to approximate the variabil-
ity parameter of the packet inter-departure time. We have
combir.d several methods and developed a delay model for
non-exhaustive cyclic queues, which gives a better approxi-
mation for the delay performance in a variety of situations,
especially when the load is very unbalanced and high. In ad-
dition, we modified the model to get the delay performance
of cyclic queues with general input traffic.

For the cyclic queue switching system, we give a method to
analyze the packet inter-departure parameters at the output
of the switch, which is an important part of the frame relay
switch model.

We will further develop the network analysis models for
a frame relay network. The main problem is to determine
the packet interarrival time variability parameters for each
trunk of the network. After the network model is perfected,
network optimization can be performed.
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